tensorflow 动态获取 BatchSzie 的大小实例

所属分类: 脚本专栏 / python 阅读数: 1937
收藏 0 赞 0 分享

我就废话不多说了,大家还是直接看代码吧~

import tensorflow as tf
import sys

with tf.variable_scope('ha'):
  a1 = tf.get_variable('a', shape=[], dtype=tf.int32)
  with tf.variable_scope('haha'):
    a2 = tf.get_variable('a', shape=[], dtype=tf.int32)
    with tf.variable_scope('hahaha'):
      a3 = tf.get_variable('a', shape=[], dtype=tf.int32)

with tf.variable_scope('ha', reuse=True):
  # 不会创建新的变量
  a4 = tf.get_variable('a', shape=[], dtype=tf.int32)
  
sum = a1 + a2 + a3 + a4

fts_s = tf.placeholder(tf.float32, shape=(None, 100), name='fts_s')
b = tf.zeros(shape=(tf.shape(fts_s)[0], tf.shape(fts_s)[1]))

concat = tf.concat(axis=1, values=[fts_s, b])

init_op = tf.global_variables_initializer()
with tf.Session() as sess:
  sess.run(init_op)
  for var in tf.global_variables():
    print var.name
  import numpy as np
  ft_sample = np.ones((10, 100))
  con_value = sess.run([concat], feed_dict={fts_s: ft_sample})
  print con_value[0].shape

results:

ha/a:0
ha/haha/a:0
ha/haha/hahaha/a:0
(10, 200)

小总结:

1: 对于未知的shape, 最常用的就是batch-size 通常是 None 代替, 那么在代码中需要用到实际数据的batch size的时候应该怎么做呢?

可以传一个tensor类型, tf.shape(Name) 返回一个tensor 类型的数据, 然后取batchsize 所在的维度即可. 这样就能根据具体的数据去获取batch size的大小

2: 对于变量命名, 要善于用 variable_scope 来规范化命名, 以及 reuse 参数可以控制共享变量

补充知识:tensorflow RNN 使用动态的batch_size

在使用tensorflow实现RNN模型时,需要初始化隐藏状态 如下:

lstm_cell_1 = [tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.BasicLSTMCell(HIDDEN_SIZE),output_keep_prob=dropout_keep_prob) for _ in range(NUM_LAYERS)]
cell_1 = tf.nn.rnn_cell.MultiRNNCell(lstm_cell_1)
self.init_state_1 = cell_1.zero_state(self.batch_size,tf.float32)

如果我们直接使用超参数batch_size初始化 在使用模型预测的结果时会很麻烦。我们可以使用动态的batch_size,就是将batch_size作为一个placeholder,在运行时,将batch_size作为输入输入就可以实现根据数据量的大小使用不同的batch_size。

代码实现如下:

self.batch_size = tf.placeholder(tf.int32,[],name='batch_size')

self.state = cell.zero_state(self.batch_size,tf.float32)

以上这篇tensorflow 动态获取 BatchSzie 的大小实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python3按一定数据位数格式处理bin文件的方法

今天小编就为大家分享一篇Python3按一定数据位数格式处理bin文件的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

对python pandas读取剪贴板内容的方法详解

今天小编就为大家分享一篇对python pandas读取剪贴板内容的方法详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python中extend和append的区别讲解

今天小编就为大家分享一篇关于Python中extend和append的区别讲解,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
收藏 0 赞 0 分享

python安装pywin32clipboard的操作方法

今天小编就为大家分享一篇python安装pywin32clipboard的操作方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

几行Python代码爬取3000+上市公司的信息

今天小编就为大家分享一篇关于几行Python代码爬取3000+上市公司的信息,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
收藏 0 赞 0 分享

Python实现查找二叉搜索树第k大的节点功能示例

这篇文章主要介绍了Python实现查找二叉搜索树第k大的节点功能,结合实例形式分析了Python二叉搜索树的定义、查找、遍历等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python微医挂号网医生数据抓取

今天小编就为大家分享一篇关于Python微医挂号网医生数据抓取,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
收藏 0 赞 0 分享

python+pyqt5实现KFC点餐收银系统

这篇文章主要为大家详细介绍了python+pyqt5实现KFC点餐收银系统,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

python用opencv批量截取图像指定区域的方法

今天小编就为大家分享一篇python用opencv批量截取图像指定区域的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python并发:多线程与多进程的详解

今天小编就为大家分享一篇关于Python并发:多线程与多进程的详解,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
收藏 0 赞 0 分享
查看更多