使用K.function()调试keras操作

所属分类: 脚本专栏 / python 阅读数: 1005
收藏 0 赞 0 分享

Keras的底层库使用Theano或TensorFlow,这两个库也称为Keras的后端。无论是Theano还是TensorFlow,都需要提前定义好网络的结构,也就是常说的“计算图”。

在运行前需要对计算图编译,然后才能输出结果。那这里面主要有两个问题,第一是这个图结构在运行中不能任意更改,比如说计算图中有一个隐含层,神经元的数量是100,你想动态的修改这个隐含层神经元的数量那是不可以的;第二是调试困难,keras没有内置的调试工具,所以计算图的中间结果是很难看到的,一旦最终输出跟预想不一致,很难找到问题所在。

这里谈一谈本人调试keras的一些经验:

分阶段构建你的神经网络

不要一口气把整个网络全部写完,这样很难保证中间结果的正确性。加如一个CNN文本分类模型是这样的(如下代码),应该在加了Embedding层后,停止,打印一下中间结果,看看跟embedding向量能不能对上,输出的shape对不对。对上了再进行下一步操作。

有的人觉得这样很浪费时间,但是除非你能一遍写对,否则你将花上5倍的时间发现错误。

 # model parameters:
 embedding_dims = 50
 cnn_filters = 100
 cnn_kernel_size = 5
 dense_hidden_dims = 200
 model = Sequential()
 model.add(Embedding(nb_words,embedding_dims,input_length=maxlen))
 model.add(Dropout(0.5))
 model.add(Conv1D(cnn_filters, cnn_kernel_size,padding='valid', activation='relu'))
 model.add(GlobalMaxPooling1D())
 model.add(Dense(dense_hidden_dims))
 model.add(Dropout(0.5))
 model.add(Activation('relu'))
 model.add(Dense(1))
 model.add(Activation('sigmoid'))
 return model

使用K.function()函数打印中间结果

function函数可以接收传入数据,并返回一个numpy数组。使用这个函数我们可以方便地看到中间结果,尤其对于变长输入的Input。

下面是官方关于function的文档。

function

keras.backend.function(inputs, outputs, updates=None)

实例化 Keras 函数。

参数

inputs: 占位符张量列表。

outputs: 输出张量列表。

updates: 更新操作列表。

**kwargs: 需要传递给 tf.Session.run 的参数。

返回

输出值为 Numpy 数组。

异常

ValueError: 如果无效的 kwargs 被传入。

example

下面这个例子是打印一个LSTM层的中间结果,值得注意的是这个LSTM的sequence是变长的,可以看到输出的结果sequence长度分别是64和128

 import keras.backend as K
 from keras.layers import LSTM, Input
 import numpy as np
 
 I = Input(shape=(None, 200)) 
 lstm = LSTM(20, return_sequences=True)
 f = K.function(inputs=[I], outputs=[lstm(I)])
 
 data1 = np.random.random(size=(2, 64, 200)) 
 print(f([data1])[0].shape)
 
 data2 = np.random.random(size=(2, 128, 200)) 
 print(f([data2])[0].shape)
 
 K.clear_session()
 
 # (2, 64, 20)
 # (2, 128, 20)

其他的调试技巧

有频繁张量变换操作的,如dot, mat, reshape等等,记得加一行形状变化的注释,如(100, 128)--> (100, 64)

可以使用tensorboard查看网络的参数情况

确保你的数据没有问题,很多时候输出不对不是神经网络有问题,而是数据有问题

以上这篇使用K.function()调试keras操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

python2.7无法使用pip的解决方法(安装easy_install)

下面小编就为大家分享一篇python2.7无法使用pip的解决方法(安装easy_install),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python实现的计算马氏距离算法示例

这篇文章主要介绍了Python实现的计算马氏距离算法,简单说明了马氏距离算法原理,并结合实例形式分析了Python实现与使用马氏距离算法的相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

python逐行读写txt文件的实例讲解

下面小编就为大家分享一篇python逐行读写txt文件的实例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python批量读取txt文件为DataFrame的方法

下面小编就为大家分享一篇python批量读取txt文件为DataFrame的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python通过调用mysql存储过程实现更新数据功能示例

这篇文章主要介绍了Python通过调用mysql存储过程实现更新数据功能,结合实例形式分析了Python调用mysql存储过程实现更新数据的具体步骤与相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现的HMacMD5加密算法示例

这篇文章主要介绍了Python实现的HMacMD5加密算法,简单说明了HMAC-MD5加密算法的概念、原理并结合实例形式分析了Python实现HMAC-MD5加密算法的相关操作技巧,,末尾还附带了Java实现HMAC-MD5加密算法的示例,需要的朋友可以参考下
收藏 0 赞 0 分享

图解Python变量与赋值

Python是一门独特的语言,与C语言有很大区别,初学Python很多萌新表示对变量与赋值不理解,这里就大家介绍一下,需要的朋友可以参考下
收藏 0 赞 0 分享

Python中的并发处理之asyncio包使用的详解

本篇文章主要介绍了Python中的并发处理之asyncio包使用的详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python获取二维矩阵每列最大值的方法

下面小编就为大家分享一篇Python获取二维矩阵每列最大值的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy找出array中的最大值,最小值实例

下面小编就为大家分享一篇numpy找出array中的最大值,最小值实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享
查看更多