keras读取训练好的模型参数并把参数赋值给其它模型详解

所属分类: 脚本专栏 / python 阅读数: 285
收藏 0 赞 0 分享

介绍

本博文中的代码,实现的是加载训练好的模型model_halcon_resenet.h5,并把该模型的参数赋值给两个不同的新的model。

函数式模型

官网上给出的调用一个训练好模型,并输出任意层的feature。

model = Model(inputs=base_model.input, outputs=base_model.get_layer(‘block4_pool').output)

但是这有一个问题,就是新的model,如果输入inputs和训练好的model的inputs大小不同呢?比如我想建立一个输入是600x600x3的新model,但是训练好的model输入是200x200x3,而这时我又想调用训练好模型的卷积核参数,这时该怎么办呢?

其实想一下,用训练好的模型参数,即使输入的尺寸不同,但是这些模型参数仍然可以处理计算,只是输出的feature map大小不同。那到底怎么赋值呢?其实很简单

在定义新的model时,新的model层在定义时,需要加上名字,而这个名字就是训练好的模型的每层名字。如下代码所示:

inputs=Input(shape=(400,500,3))
X=Conv2D(32, (3, 3),name=“conv2d_1”)(inputs)
X=BatchNormalization(name=“batch_normalization_1”)(X)
X=Activation(‘relu',name=“activation_1”)(X)

最后通过以下代码即可建立一个新的模型并拥有训练好模型的参数:

model=Model(inputs=inputs, outputs=X)
model.load_weights(‘model_halcon_resenet.h5', by_name=True)

源代码

from keras.models import load_model
from keras.preprocessing import image
from keras.applications.vgg19 import preprocess_input
from keras.models import Model
import numpy as np
from keras.layers import Conv2D, MaxPooling2D,merge
from keras.layers import BatchNormalization,Activation
from keras.layers import Input, Dense
from PIL import Image
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten,Input
from keras.layers import Conv2D, MaxPooling2D,merge,AveragePooling2D,GlobalAveragePooling2D
from keras.layers import BatchNormalization,Activation
from sklearn.model_selection import train_test_split
from keras.applications.densenet import DenseNet169, DenseNet121
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from keras.applications.inception_v3 import InceptionV3
from keras.optimizers import SGD
from keras import regularizers
from keras.models import Model
import tensorflow as tf
from PIL import Image
from keras.callbacks import TensorBoard
import os
import cv2
from keras import backend as K
from model import focal_loss
import keras.losses

#ReadMe 该代码是参考fast rcnn系列,先对整幅图像提取特征feature map,然后从原图对应位置上映射到feature map,并对feature map进行
# 切片,从而提取对应某个位置上的特征,并把该特征送进后面的识别网络进行分类识别。
keras.losses.focal_loss = focal_loss#这句代码是为了引入定义的loss
base_model=load_model('model_halcon_resenet.h5')
base_model.summary()

inputs=Input(shape=(400,500,3))
X=Conv2D(32, (3, 3),name="conv2d_1")(inputs)
X=BatchNormalization(name="batch_normalization_1")(X)
X=Activation('relu',name="activation_1")(X)
#第一个残差模块
X_1=Conv2D(32, (3, 3),padding='same',name="conv2d_2")(X)
X_1=BatchNormalization(name="batch_normalization_2")(X_1)
X_1= Activation('relu',name="activation_2")(X_1)
X_1 = Conv2D(32, (3, 3),padding='same',name="conv2d_3")(X_1)
X_1 = BatchNormalization(name="batch_normalization_3")(X_1)
merge_data = merge([X_1, X], mode='sum',name="merge_1")
X = Activation('relu',name="activation_3")(merge_data)
#第一个残差模块结束
X=MaxPooling2D(pool_size=(2, 2),strides=(2,2),name="max_pooling2d_1")(X)
X=Conv2D(64, (3, 3),kernel_regularizer=regularizers.l2(0.01),name="conv2d_4")(X)
X=BatchNormalization(name="batch_normalization_4")(X)
X=Activation('relu',name="activation_4")(X)
#第二个残差模块
X_2=Conv2D(64, (3, 3),padding='same',name="conv2d_5")(X)
X_2=BatchNormalization(name="batch_normalization_5")(X_2)
X_2= Activation('relu',name="activation_5")(X_2)
X_2 = Conv2D(64, (3, 3),padding='same',name="conv2d_6")(X_2)
X_2 = BatchNormalization(name="batch_normalization_6")(X_2)
merge_data = merge([X_2, X], mode='sum',name="merge_2")
X = Activation('relu',name="activation_6")(merge_data)
#第二个残差模块结束
X = MaxPooling2D(pool_size=(2, 2), strides=(2, 2),name="max_pooling2d_2")(X)
X=Conv2D(64, (3, 3),name="conv2d_7")(X)
X=BatchNormalization(name="batch_normalization_7")(X)
X=Activation('relu',name="activation_7")(X)
X=MaxPooling2D(pool_size=(2, 2),strides=(2,2),name="max_pooling2d_3")(X)
#第三个残差模块开始
X_3=Conv2D(64, (3, 3),padding='same',name="conv2d_8")(X)
X_3=BatchNormalization(name="batch_normalization_8")(X_3)
X_3= Activation('relu',name="activation_8")(X_3)
X_3 = Conv2D(64, (3, 3),padding='same',name="conv2d_9")(X_3)
X_3 = BatchNormalization(name="batch_normalization_9")(X_3)
merge_data = merge([X_3, X], mode='sum',name="merge_3")
X = Activation('relu',name="activation_9")(merge_data)
#第三个残差模块结束
X=Conv2D(32, (3, 3),kernel_regularizer=regularizers.l2(0.01),name="conv2d_10")(X)
X=BatchNormalization(name="batch_normalization_10")(X)
X=Activation('relu',name="activation_10")(X)
#第四个残差模块开始
X_4=Conv2D(32, (3, 3),padding='same',name="conv2d_11")(X)
X_4=BatchNormalization(name="batch_normalization_11")(X_4)
X_4= Activation('relu',name="activation_11")(X_4)
X_4 = Conv2D(32, (3, 3),padding='same',name="conv2d_12")(X_4)
X_4 = BatchNormalization(name="batch_normalization_12")(X_4)
merge_data = merge([X_4, X], mode='sum',name="merge_4")
X = Activation('relu',name="activation_12")(merge_data)
#第四个残差模块结束
X = MaxPooling2D(pool_size=(2, 2), strides=(2, 2),name="max_pooling2d_4")(X)
X = Conv2D(64, (3, 3),name="conv2d_13")(X)
X = BatchNormalization(name="batch_normalization_13")(X)
X = Activation('relu',name="activation_13")(X)
#第五个残差模块开始
X_5=Conv2D(64, (3, 3),padding='same',name="conv2d_14")(X)
X_5=BatchNormalization(name="batch_normalization_14")(X_5)
X_5= Activation('relu',name="activation_14")(X_5)
X_5 = Conv2D(64, (3, 3),padding='same',name="conv2d_15")(X_5)
X_5 = BatchNormalization(name="batch_normalization_15")(X_5)
merge_data = merge([X_5, X], mode='sum',name="merge_5")
X = Activation('relu',name="activation_15")(merge_data)
#第五个残差模块结束
model=Model(inputs=inputs, outputs=X)
model.load_weights('model_halcon_resenet.h5', by_name=True)
#读取指定图像数据
image_dir='C:/Users/18301/Desktop/blister/new/blister_mixed_11.png'
img = image.load_img(image_dir, target_size=(400, 500))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
#利用第一个模型预测出特征数据,并对特征数据进行切片
feature_map=model.predict(x)
T=np.array(feature_map)
f_1=T[:,16:21,0:10,:]
print(f_1.shape)
print(feature_map.shape)
#第一个模型没有问题
#定义第二个模型
inputs_sec=Input(shape=(1,5,10,64))
X_= Flatten(name="flatten_1")(inputs_sec)
X_ = Dense(256, activation='relu',name="dense_1")(X_)
X_ = Dropout(0.5,name="dropout_1")(X_)
predictions = Dense(6, activation='softmax',name="dense_2")(X_)
model_sec=Model(inputs=inputs_sec, outputs=predictions)
model_sec.load_weights('model_halcon_resenet.h5', by_name=True)
#第二个模型定义结束
model_sec.summary()
#开始对整幅图像进行切片,并记录坐标位置
pic=cv2.imread(image_dir)
cor_list=[]
name_list=['blank','green_blank','red_blank','yellow','yellow_balnk','yellow_blue']
font = cv2.FONT_HERSHEY_SIMPLEX
for i in range(3):
 for j in range(5):
 if(i==2):
  cut_feature = T[:, 4 * j:4 * j + 5, 17:27, :]
  data = np.expand_dims(cut_feature, axis=0)
  result = model_sec.predict(data)
  print(result)
  result_data=result[0].tolist()
  #如果置信度过低,则舍弃
  # if(max(result_data)<=0.7):
  # continue
  index_num = result_data.index(max(result_data))
  name=name_list[index_num]
  cor_list = [i * 160 + 6, j * 80] # 每个切片数据,映射到原图上,检测框对应的左上角坐标
  x=cor_list[0]
  y=cor_list[1]
  cv2.rectangle(pic, (160 * i + 6, 80 * j), ((i + 1) * 160 + 6, 80 * (j+ 1)), (0, 255, 0), 2)
  cv2.putText(pic, name, (x + 40, y + 40), font, 0.5, (0, 0, 255), 1)
 else:
  cut_feature = T[:, 4 * j:4 * j + 5, 9 * i:9 * i + 10, :]
  data = np.expand_dims(cut_feature, axis=0)
  result = model_sec.predict(data)
  print(result)
  result_data = result[0].tolist()
  #如果置信度过低,则舍弃
  # if (max(result_data) <= 0.7):
  # continue
  index_num = result_data.index(max(result_data))
  name = name_list[index_num]
  cor_list = [i * 160 + 6, j * 80] # 每个切片数据,映射到原图上,检测框对应的左上角坐标
  x = cor_list[0]
  y = cor_list[1]
  cv2.rectangle(pic, (160 * i + 6, 80 * j), ((i + 1) * 160 + 6, 80 * (j + 1)), (0, 255, 0), 2)
  cv2.putText(pic, name, (x + 40, y + 40), font, 0.5, (0, 0, 255), 1)

cv2.imshow('pic',pic)
cv2.waitKey(0)
cv2.destroyAllWindows()
# data= np.expand_dims(f_1, axis=0)
# result=model_sec.predict(data)
# print(result)
#第二个模型可以完全预测,没有问题

补充知识:加载训练好的模型参数,但是权重一直变化

变量初始化会导致权重发生变化,去掉就好了。

以上这篇keras读取训练好的模型参数并把参数赋值给其它模型详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

python打印直角三角形与等腰三角形实例代码

这篇文章主要给大家介绍了关于python打印直角三角形与等腰三角形的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者使用python具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
收藏 0 赞 0 分享

基于python解线性矩阵方程(numpy中的matrix类)

这篇文章主要介绍了基于python解线性矩阵方程(numpy中的matrix类),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

vim自动补全插件YouCompleteMe(YCM)安装过程解析

这篇文章主要介绍了vim自动补全插件YouCompleteMe(YCM)安装过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python中@property和property函数常见使用方法示例

这篇文章主要介绍了python中@property和property函数常见使用方法,结合实例形式分析了Python @property和property函数功能、使用方法及相关操作注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

python中bytes和str类型的区别

这篇文章主要介绍了python中bytes和str类型的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

详解python中*号的用法

这篇文章主要介绍了python中*号的用法,文中通过代码给大家介绍了双星号(**)的用法,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python超时重新请求解决方案

这篇文章主要介绍了python超时重新请求解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python多继承(钻石继承)问题和解决方法简单示例

这篇文章主要介绍了python多继承(钻石继承)问题和解决方法,结合实例形式分析了Python多继承调用父类初始化方法相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

基于Python解密仿射密码

这篇文章主要介绍了基于Python解密仿射密码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

基于Python实现船舶的MMSI的获取(推荐)

工作中遇到一个需求,需要通过网站查询船舶名称得到MMSI码,网站来自船讯网。这篇文章主要介绍了基于Python实现船舶的MMSI的获取,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多