使用python实现多维数据降维操作

所属分类: 脚本专栏 / python 阅读数: 442
收藏 0 赞 0 分享

一,首先介绍下多维列表的降维

def flatten(a):
 for each in a:
  if not isinstance(each,list):
   yield each
  else:
   yield from flatten(each)
if __name__ == "__main__":
 a = [[1,2],[3,[4,5]],6]
 print(list(flatten(a)))

二、这种降维方法同样适用于多维迭代器的降维

from collections import Iterable
 
def flattern(a):
 for i in a:
  if not isinstance(i,Iterable) or isinstance(i,str):
   yield i
  else:
   yield from flattern(i)
if __name__ == "__main__":
 a = [[1,2],(3,4,tuple(5,)),["6,7,8"],[9,range(10,20,1)]]
 print(list(flattern(a)))

iterable:可迭代的,迭代器,在Python中iterable被认为是一个对象,这个对象可以一次返回它的一个成员(也就是对象里面的元素),Python中的string,list,tuple,dict,file,xrange都是可迭代的,都属于iterable对象,可迭代的对象都是可以遍历的,实际上Python中有很多iterable类型是使用iter()函数来生成的。

补充:将一个多维数组彻底的降维

废话不多说,直接上代码

const flattenDeep = arr =>
 Array.isArray(arr)
 ? arr.reduce((a, b) => [...a, ...flattenDeep(b)], [])
 : [arr];

以上这篇使用python实现多维数据降维操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现图像几何变换

这篇文章主要介绍了Python实现图像几何变换的方法,实例分析了Python基于Image模块实现图像翻转、旋转、改变大小等操作的相关技巧,非常简单实用,需要的朋友可以参考下
收藏 0 赞 0 分享

Python中的urllib模块使用详解

这篇文章主要介绍了Python中的urllib模块使用详解,是Python入门学习中的基础知识,需要的朋友可以参考下
收藏 0 赞 0 分享

Python的多态性实例分析

这篇文章主要介绍了Python的多态性,以实例形式深入浅出的分析了Python在面向对象编程中多态性的原理与实现方法,需要的朋友可以参考下
收藏 0 赞 0 分享

python生成IP段的方法

这篇文章主要介绍了python生成IP段的方法,涉及Python文件读写及随机数操作的相关技巧,具有一定参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python操作redis的方法

这篇文章主要介绍了python操作redis的方法,包括Python针对redis的连接、设置、获取、删除等常用技巧,具有一定参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python妹子图简单爬虫实例

这篇文章主要介绍了python妹子图简单爬虫,实例分析了Python爬虫程序所涉及的页面源码获取、进度显示、正则匹配等技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

分析用Python脚本关闭文件操作的机制

这篇文章主要介绍了分析用Python脚本关闭文件操作的机制,作者分Python2.x版本和3.x版本两种情况进行了阐述,需要的朋友可以参考下
收藏 0 赞 0 分享

python实现搜索指定目录下文件及文件内搜索指定关键词的方法

这篇文章主要介绍了python实现搜索指定目录下文件及文件内搜索指定关键词的方法,可实现针对文件夹及文件内关键词的搜索功能,需要的朋友可以参考下
收藏 0 赞 0 分享

python中getaddrinfo()基本用法实例分析

这篇文章主要介绍了python中getaddrinfo()基本用法,实例分析了Python中使用getaddrinfo方法进行IP地址解析的基本技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

python查找指定具有相同内容文件的方法

这篇文章主要介绍了python查找指定具有相同内容文件的方法,涉及Python针对文件操作的相关技巧,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多