使用Python实现牛顿法求极值

所属分类: 脚本专栏 / python 阅读数: 733
收藏 0 赞 0 分享

对于一个多元函数 用牛顿法求其极小值的迭代格式为

其中 为函数 的梯度向量, 为函数 的Hesse(Hessian)矩阵。

上述牛顿法不是全局收敛的。为此可以引入阻尼牛顿法(又称带步长的牛顿法)。

我们知道,求极值的一般迭代格式为

其中 为搜索步长, 为搜索方向(注意所有的迭代格式都是先计算搜索方向,再计算搜索步长,如同瞎子下山一样,先找到哪个方向可行下降,再决定下几步)。

取下降方向 即得阻尼牛顿法,只不过搜索步长 不确定,需要用线性搜索技术确定一个较优的值,比如精确线性搜索或者Goldstein搜索、Wolfe搜索等。特别地,当 一直取为常数1时,就是普通的牛顿法。

以Rosenbrock函数为例,即有

于是可得函数的梯度

函数 的Hesse矩阵为

编写Python代码如下(使用版本为Python3.3):

"""
Newton法
Rosenbrock函数
函数 f(x)=100*(x(2)-x(1).^2).^2+(1-x(1)).^2
梯度 g(x)=(-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1)),200*(x(2)-x(1)^2))^(T)
"""

import numpy as np
import matplotlib.pyplot as plt

def jacobian(x):
 return np.array([-400*x[0]*(x[1]-x[0]**2)-2*(1-x[0]),200*(x[1]-x[0]**2)])

def hessian(x):
 return np.array([[-400*(x[1]-3*x[0]**2)+2,-400*x[0]],[-400*x[0],200]])

X1=np.arange(-1.5,1.5+0.05,0.05)
X2=np.arange(-3.5,2+0.05,0.05)
[x1,x2]=np.meshgrid(X1,X2)
f=100*(x2-x1**2)**2+(1-x1)**2; # 给定的函数
plt.contour(x1,x2,f,20) # 画出函数的20条轮廓线


def newton(x0):

 print('初始点为:')
 print(x0,'\n')
 W=np.zeros((2,10**3))
 i = 1
 imax = 1000
 W[:,0] = x0 
 x = x0
 delta = 1
 alpha = 1

 while i<imax and delta>10**(-5):
  p = -np.dot(np.linalg.inv(hessian(x)),jacobian(x))
  x0 = x
  x = x + alpha*p
  W[:,i] = x
  delta = sum((x-x0)**2)
  print('第',i,'次迭代结果:')
  print(x,'\n')
  i=i+1
 W=W[:,0:i] # 记录迭代点
 return W

x0 = np.array([-1.2,1])
W=newton(x0)

plt.plot(W[0,:],W[1,:],'g*',W[0,:],W[1,:]) # 画出迭代点收敛的轨迹
plt.show()

上述代码中jacobian(x)返回函数的梯度,hessian(x)返回函数的Hesse矩阵,用W矩阵记录迭代点的坐标,然后画出点的搜索轨迹。

可得输出结果为

初始点为:
[-1.2 1. ] 

第 1 次迭代结果:
[-1.1752809 1.38067416] 

第 2 次迭代结果:
[ 0.76311487 -3.17503385] 

第 3 次迭代结果:
[ 0.76342968 0.58282478] 

第 4 次迭代结果:
[ 0.99999531 0.94402732] 

第 5 次迭代结果:
[ 0.9999957 0.99999139] 

第 6 次迭代结果:
[ 1. 1.] 

即迭代了6次得到了最优解,画出的迭代点的轨迹如下:

由于主要使用了Python的Numpy模块来进行计算,可以看出,代码和最终的图与Matlab是很相像的。

以上这篇使用Python实现牛顿法求极值就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多