pytorch:实现简单的GAN示例(MNIST数据集)

所属分类: 脚本专栏 / python 阅读数: 1589
收藏 0 赞 0 分享

我就废话不多说了,直接上代码吧!

# -*- coding: utf-8 -*-
"""
Created on Sat Oct 13 10:22:45 2018
@author: www
"""
 
import torch
from torch import nn
from torch.autograd import Variable
 
import torchvision.transforms as tfs
from torch.utils.data import DataLoader, sampler
from torchvision.datasets import MNIST
 
import numpy as np
 
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
 
plt.rcParams['figure.figsize'] = (10.0, 8.0) # 设置画图的尺寸
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
 
def show_images(images): # 定义画图工具
  images = np.reshape(images, [images.shape[0], -1])
  sqrtn = int(np.ceil(np.sqrt(images.shape[0])))
  sqrtimg = int(np.ceil(np.sqrt(images.shape[1])))
 
  fig = plt.figure(figsize=(sqrtn, sqrtn))
  gs = gridspec.GridSpec(sqrtn, sqrtn)
  gs.update(wspace=0.05, hspace=0.05)
 
  for i, img in enumerate(images):
    ax = plt.subplot(gs[i])
    plt.axis('off')
    ax.set_xticklabels([])
    ax.set_yticklabels([])
    ax.set_aspect('equal')
    plt.imshow(img.reshape([sqrtimg,sqrtimg]))
  return 
  
def preprocess_img(x):
  x = tfs.ToTensor()(x)
  return (x - 0.5) / 0.5
 
def deprocess_img(x):
  return (x + 1.0) / 2.0
 
class ChunkSampler(sampler.Sampler): # 定义一个取样的函数
  """Samples elements sequentially from some offset. 
  Arguments:
    num_samples: # of desired datapoints
    start: offset where we should start selecting from
  """
  def __init__(self, num_samples, start=0):
    self.num_samples = num_samples
    self.start = start
 
  def __iter__(self):
    return iter(range(self.start, self.start + self.num_samples))
 
  def __len__(self):
    return self.num_samples
    
NUM_TRAIN = 50000
NUM_VAL = 5000
 
NOISE_DIM = 96
batch_size = 128
 
train_set = MNIST('E:/data', train=True, transform=preprocess_img)
 
train_data = DataLoader(train_set, batch_size=batch_size, sampler=ChunkSampler(NUM_TRAIN, 0))
 
val_set = MNIST('E:/data', train=True, transform=preprocess_img)
 
val_data = DataLoader(val_set, batch_size=batch_size, sampler=ChunkSampler(NUM_VAL, NUM_TRAIN))
 
imgs = deprocess_img(train_data.__iter__().next()[0].view(batch_size, 784)).numpy().squeeze() # 可视化图片效果
show_images(imgs)
 
#判别网络
def discriminator():
  net = nn.Sequential(    
      nn.Linear(784, 256),
      nn.LeakyReLU(0.2),
      nn.Linear(256, 256),
      nn.LeakyReLU(0.2),
      nn.Linear(256, 1)
    )
  return net
  
#生成网络
def generator(noise_dim=NOISE_DIM):  
  net = nn.Sequential(
    nn.Linear(noise_dim, 1024),
    nn.ReLU(True),
    nn.Linear(1024, 1024),
    nn.ReLU(True),
    nn.Linear(1024, 784),
    nn.Tanh()
  )
  return net
  
#判别器的 loss 就是将真实数据的得分判断为 1,假的数据的得分判断为 0,而生成器的 loss 就是将假的数据判断为 1
 
bce_loss = nn.BCEWithLogitsLoss()#交叉熵损失函数
 
def discriminator_loss(logits_real, logits_fake): # 判别器的 loss
  size = logits_real.shape[0]
  true_labels = Variable(torch.ones(size, 1)).float()
  false_labels = Variable(torch.zeros(size, 1)).float()
  loss = bce_loss(logits_real, true_labels) + bce_loss(logits_fake, false_labels)
  return loss
  
def generator_loss(logits_fake): # 生成器的 loss 
  size = logits_fake.shape[0]
  true_labels = Variable(torch.ones(size, 1)).float()
  loss = bce_loss(logits_fake, true_labels)
  return loss
  
# 使用 adam 来进行训练,学习率是 3e-4, beta1 是 0.5, beta2 是 0.999
def get_optimizer(net):
  optimizer = torch.optim.Adam(net.parameters(), lr=3e-4, betas=(0.5, 0.999))
  return optimizer
  
def train_a_gan(D_net, G_net, D_optimizer, G_optimizer, discriminator_loss, generator_loss, show_every=250, 
        noise_size=96, num_epochs=10):
  iter_count = 0
  for epoch in range(num_epochs):
    for x, _ in train_data:
      bs = x.shape[0]
      # 判别网络
      real_data = Variable(x).view(bs, -1) # 真实数据
      logits_real = D_net(real_data) # 判别网络得分
      
      sample_noise = (torch.rand(bs, noise_size) - 0.5) / 0.5 # -1 ~ 1 的均匀分布
      g_fake_seed = Variable(sample_noise)
      fake_images = G_net(g_fake_seed) # 生成的假的数据
      logits_fake = D_net(fake_images) # 判别网络得分
 
      d_total_error = discriminator_loss(logits_real, logits_fake) # 判别器的 loss
      D_optimizer.zero_grad()
      d_total_error.backward()
      D_optimizer.step() # 优化判别网络
      
      # 生成网络
      g_fake_seed = Variable(sample_noise)
      fake_images = G_net(g_fake_seed) # 生成的假的数据
 
      gen_logits_fake = D_net(fake_images)
      g_error = generator_loss(gen_logits_fake) # 生成网络的 loss
      G_optimizer.zero_grad()
      g_error.backward()
      G_optimizer.step() # 优化生成网络
 
      if (iter_count % show_every == 0):
        print('Iter: {}, D: {:.4}, G:{:.4}'.format(iter_count, d_total_error.item(), g_error.item()))
        imgs_numpy = deprocess_img(fake_images.data.cpu().numpy())
        show_images(imgs_numpy[0:16])
        plt.show()
        print()
      iter_count += 1
 
D = discriminator()
G = generator()
 
D_optim = get_optimizer(D)
G_optim = get_optimizer(G)
 
train_a_gan(D, G, D_optim, G_optim, discriminator_loss, generator_loss)      

以上这篇pytorch:实现简单的GAN示例(MNIST数据集)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现图像几何变换

这篇文章主要介绍了Python实现图像几何变换的方法,实例分析了Python基于Image模块实现图像翻转、旋转、改变大小等操作的相关技巧,非常简单实用,需要的朋友可以参考下
收藏 0 赞 0 分享

Python中的urllib模块使用详解

这篇文章主要介绍了Python中的urllib模块使用详解,是Python入门学习中的基础知识,需要的朋友可以参考下
收藏 0 赞 0 分享

Python的多态性实例分析

这篇文章主要介绍了Python的多态性,以实例形式深入浅出的分析了Python在面向对象编程中多态性的原理与实现方法,需要的朋友可以参考下
收藏 0 赞 0 分享

python生成IP段的方法

这篇文章主要介绍了python生成IP段的方法,涉及Python文件读写及随机数操作的相关技巧,具有一定参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python操作redis的方法

这篇文章主要介绍了python操作redis的方法,包括Python针对redis的连接、设置、获取、删除等常用技巧,具有一定参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python妹子图简单爬虫实例

这篇文章主要介绍了python妹子图简单爬虫,实例分析了Python爬虫程序所涉及的页面源码获取、进度显示、正则匹配等技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

分析用Python脚本关闭文件操作的机制

这篇文章主要介绍了分析用Python脚本关闭文件操作的机制,作者分Python2.x版本和3.x版本两种情况进行了阐述,需要的朋友可以参考下
收藏 0 赞 0 分享

python实现搜索指定目录下文件及文件内搜索指定关键词的方法

这篇文章主要介绍了python实现搜索指定目录下文件及文件内搜索指定关键词的方法,可实现针对文件夹及文件内关键词的搜索功能,需要的朋友可以参考下
收藏 0 赞 0 分享

python中getaddrinfo()基本用法实例分析

这篇文章主要介绍了python中getaddrinfo()基本用法,实例分析了Python中使用getaddrinfo方法进行IP地址解析的基本技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

python查找指定具有相同内容文件的方法

这篇文章主要介绍了python查找指定具有相同内容文件的方法,涉及Python针对文件操作的相关技巧,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多