Pytorch在NLP中的简单应用详解

所属分类: 脚本专栏 / python 阅读数: 1457
收藏 0 赞 0 分享

因为之前在项目中一直使用Tensorflow,最近需要处理NLP问题,对Pytorch框架还比较陌生,所以特地再学习一下pytorch在自然语言处理问题中的简单使用,这里做一个记录。

一、Pytorch基础

首先,第一步是导入pytorch的一系列包

import torch
import torch.autograd as autograd #Autograd为Tensor所有操作提供自动求导方法
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

1)Tensor张量

a) 创建Tensors

#tensor
x = torch.Tensor([[1,2,3],[4,5,6]])
#size为2x3x4的随机数随机数
x = torch.randn((2,3,4))

b) Tensors计算

x = torch.Tensor([[1,2],[3,4]])
y = torch.Tensor([[5,6],[7,8]])
z = x+y

c) Reshape Tensors

x = torch.randn(2,3,4)
#拉直
x = x.view(-1)
#4*6维度
x = x.view(4,6)

2)计算图和自动微分

a) Variable变量

#将Tensor变为Variable
x = autograd.Variable(torch.Tensor([1,2,3]),requires_grad = True)
#将Variable变为Tensor
y = x.data

b) 反向梯度算法

x = autograd.Variable(torch.Tensor([1,2]),requires_grad=True)
y = autograd.Variable(torch.Tensor([3,4]),requires_grad=True)
z = x+y
#求和
s = z.sum()
#反向梯度传播
s.backward()
print(x.grad)

c) 线性映射

linear = nn.Linear(3,5) #三维线性映射到五维
x = autograd.Variable(torch.randn(4,3))
#输出为(4,5)维
y = linear(x)

d) 非线性映射(激活函数的使用)

x = autograd.Variable(torch.randn(5))
#relu激活函数
x_relu = F.relu(x)
print(x_relu)
x_soft = F.softmax(x)
#softmax激活函数
print(x_soft)
print(x_soft.sum())

output:

Variable containing:
-0.9347
-0.9882
 1.3801
-0.1173
 0.9317
[torch.FloatTensor of size 5]
 
Variable containing:
 0.0481
 0.0456
 0.4867
 0.1089
 0.3108
[torch.FloatTensor of size 5]
 
Variable containing:
 1
[torch.FloatTensor of size 1]
 
Variable containing:
-3.0350
-3.0885
-0.7201
-2.2176
-1.1686
[torch.FloatTensor of size 5]

二、Pytorch创建网络

1) word embedding词嵌入

通过nn.Embedding(m,n)实现,m表示所有的单词数目,n表示词嵌入的维度。

word_to_idx = {'hello':0,'world':1}
embeds = nn.Embedding(2,5) #即两个单词,单词的词嵌入维度为5
hello_idx = torch.LongTensor([word_to_idx['hello']])
hello_idx = autograd.Variable(hello_idx)
hello_embed = embeds(hello_idx)
print(hello_embed)

output:

Variable containing:
-0.6982 0.3909 -1.0760 -1.6215 0.4429
[torch.FloatTensor of size 1x5]

2) N-Gram 语言模型

先介绍一下N-Gram语言模型,给定一个单词序列 ,计算 ,其中 是序列的第 个单词。

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.autograd as autograd
import torch.optim as optim
 
from six.moves import xrange

对句子进行分词:

context_size = 2
embed_dim = 10
text_sequence = """When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a totter'd weed of small worth held:
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,'
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.""".split()
#分词
trigrams = [ ([text_sequence[i], text_sequence[i+1]], text_sequence[i+2]) for i in xrange(len(text_sequence) - 2) ]
trigrams[:10]

分词的形式为:

#建立vocab索引
vocab = set(text_sequence)
word_to_ix = {word: i for i,word in enumerate(vocab)}

建立N-Gram Language model

#N-Gram Language model
class NGramLanguageModeler(nn.Module): 
 def __init__(self, vocab_size, embed_dim, context_size):
  super(NGramLanguageModeler, self).__init__()
  #词嵌入
  self.embedding = nn.Embedding(vocab_size, embed_dim)
  #两层线性分类器
  self.linear1 = nn.Linear(embed_dim*context_size, 128)
  self.linear2 = nn.Linear(128, vocab_size)
  
 def forward(self, input):
  embeds = self.embedding(input).view((1, -1)) #2,10拉直为20
  out = F.relu(self.linear1(embeds))
  out = F.relu(self.linear2(out))
  log_probs = F.log_softmax(out)
  return log_probs  

输出模型看一下网络结构

#输出模型看一下网络结构
model = NGramLanguageModeler(96,10,2)
print(model)

定义损失函数和优化器

#定义损失函数以及优化器
loss_function = nn.NLLLoss()
optimizer = optim.SGD(model.parameters(),lr = 0.01)
model = NGramLanguageModeler(len(vocab), embed_dim, context_size)
losses = []

模型训练

#模型训练
for epoch in xrange(10):
 total_loss = torch.Tensor([0])
 for context, target in trigrams:
  #1.处理数据输入为索引向量
  #print(context)
  #注:python3中map函数前要加上list()转换为列表形式
  context_idxs = list(map(lambda w: word_to_ix[w], context))
  #print(context_idxs)
  context_var = autograd.Variable( torch.LongTensor(context_idxs) )
 
  
  #2.梯度清零
  model.zero_grad()
  
  #3.前向传播,计算下一个单词的概率
  log_probs = model(context_var)
  
  #4.损失函数
  loss = loss_function(log_probs, autograd.Variable(torch.LongTensor([word_to_ix[target]])))
  
  #反向传播及梯度更新
  loss.backward()
  optimizer.step()
  
  total_loss += loss.data 
 losses.append(total_loss)
print(losses)

以上这篇Pytorch在NLP中的简单应用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多