机器学习实战之knn算法pandas

所属分类: 脚本专栏 / python 阅读数: 586
收藏 0 赞 0 分享

机器学习实战之knn算法pandas,供大家参考,具体内容如下

开始学习机器学习实战这本书,打算看完了再回头看 周志华的 机器学习。机器学习实战的代码都是用numpy写的,有些麻烦,所以考虑用pandas来实现代码,也能回顾之前学的 用python进行数据分析。感觉目前章节的测试方法太渣,留着以后学了更多再回头写。

# coding: gbk
import pandas as pd
import numpy as np


def getdata(path):
 data = pd.read_csv(path, header=None, sep='\t')
 character = data.iloc[:, :-1]
 label = data.iloc[:, -1]
 chara_max = character.max()
 chara_min = character.min()
 chara_range = chara_max - chara_min
 normal_chara = (character - chara_min) / chara_range
 return normal_chara, label # 获得归一化特征值和标记


def knn(inX, normal_chara, label, k):
 data_sub = normal_chara - inX
 data_square = data_sub.applymap(np.square)
 data_sum = data_square.sum(axis=1)
 data_sqrt = data_sum.map(np.sqrt)
 dis_sort = data_sqrt.argsort()
 k_label = label[dis_sort[:k]]
 label_sort = k_label.value_counts()
 res_label = label_sort.index[0]
 return res_label # knn算法分类

小编为大家分享一段代码:机器学习--KNN基本实现

# _*_ coding _*_
import numpy as np
import math
import operator
 
def get_data(dataset):
 x = dataset[:,:-1].astype(np.float)
 y = dataset[:,-1]
 return x,y
# def cal_dis(a,b):
# x1,y1 = a[:]
# x2,y2 = b[:]
# dist = math.sqrt(math.pow(2,x2)-math.pow(2,x1))
 
def knnclassifer(dataset,predict,k=3):
 x,y = get_data(dataset)
 dic = {}
 distince = np.sum((predict-x)**2,axis=1)**0.5
 sorted_dict = np.argsort(distince)#[2 1 0 3 4]
 countLabel = {}
 for i in range(k):
 label = y[sorted_dict[i]]
 # print(i,sorted_dict[i],label)
 countLabel[label] = countLabel.get(label,0)+1
 new_dic = sorted(countLabel,key=operator.itemgetter(0),reverse=True)
 return new_dic[0][0]
 
if __name__ == '__main__':
 dataset = np.loadtxt("dataset.txt",dtype=np.str,delimiter=",")
 
 predict = [2,2]
 label = knnclassifer(dataset,predict,3)
 print(label)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python用5行代码写一个自定义简单二维码

今天小编就为大家分享一篇关于Python用5行代码写一个自定义简单二维码的文章,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
收藏 0 赞 0 分享

python中将正则过滤的内容输出写入到文件中的实例

今天小编就为大家分享一篇python中将正则过滤的内容输出写入到文件中的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

一看就懂得Python的math模块

今天小编就为大家分享一篇关于Python的math模块,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
收藏 0 赞 0 分享

python按时间排序目录下的文件实现方法

今天小编就为大家分享一篇python按时间排序目录下的文件实现方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python检测文件夹变化,并拷贝有更新的文件到对应目录的方法

今天小编就为大家分享一篇python检测文件夹变化,并拷贝有更新的文件到对应目录的方法。具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

通过python将大量文件按修改时间分类的方法

今天小编就为大家分享一篇通过python将大量文件按修改时间分类的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

解决python中os.listdir()函数读取文件夹下文件的乱序和排序问题

今天小编就为大家分享一篇解决python中os.listdir()函数读取文件夹下文件的乱序和排序问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python 对key为时间的dict排序方法

今天小编就为大家分享一篇python 对key为时间的dict排序方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

使用Python抓取豆瓣影评数据的方法

今天小编就为大家分享一篇关于使用Python抓取豆瓣影评数据的方法,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
收藏 0 赞 0 分享

Python实现Dijkstra算法

今天小编就为大家分享一篇关于Python实现Dijkstra算法,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
收藏 0 赞 0 分享
查看更多