Python数据预处理之数据规范化(归一化)示例

所属分类: 脚本专栏 / python 阅读数: 1836
收藏 0 赞 0 分享

本文实例讲述了Python数据预处理之数据规范化。分享给大家供大家参考,具体如下:

数据规范化

为了消除指标之间的量纲和取值范围差异的影响,需要进行标准化(归一化)处理,将数据按照比例进行缩放,使之落入一个特定的区域,便于进行综合分析。

数据规范化方法主要有:

- 最小-最大规范化
- 零-均值规范化

数据示例

代码实现

#-*- coding: utf-8 -*-
#数据规范化
import pandas as pd
import numpy as np
datafile = 'normalization_data.xls' #参数初始化
data = pd.read_excel(datafile, header = None) #读取数据
(data - data.min())/(data.max() - data.min()) #最小-最大规范化
(data - data.mean())/data.std() #零-均值规范化

从命令行可以看到下面的输出:

>>> (data-data.min())/(data.max()-data.min(
          0         1         2         3
0  0.074380  0.937291  0.923520  1.000000
1  0.619835  0.000000  0.000000  0.850941
2  0.214876  0.119565  0.813322  0.000000
3  0.000000  1.000000  1.000000  0.563676
4  1.000000  0.942308  0.996711  0.804149
5  0.264463  0.838629  0.814967  0.909310
6  0.636364  0.846990  0.786184  0.929571

>>> (data-data.mean())/data.std()
          0         1         2         3
0 -0.905383  0.635863  0.464531  0.798149
1  0.604678 -1.587675 -2.193167  0.369390
2 -0.516428 -1.304030  0.147406 -2.078279
3 -1.111301  0.784628  0.684625 -0.456906
4  1.657146  0.647765  0.675159  0.234796
5 -0.379150  0.401807  0.152139  0.537286
6  0.650438  0.421642  0.069308  0.595564

上述代码改为使用print语句打印,如下:

#-*- coding: utf-8 -*-
#数据规范化
import pandas as pd
import numpy as np
datafile = 'normalization_data.xls' #参数初始化
data = pd.read_excel(datafile, header = None) #读取数据
print((data - data.min())/(data.max() - data.min())) #最小-最大规范化
print((data - data.mean())/data.std()) #零-均值规范化

可输出如下打印结果:

          0         1         2         3
0  0.074380  0.937291  0.923520  1.000000
1  0.619835  0.000000  0.000000  0.850941
2  0.214876  0.119565  0.813322  0.000000
3  0.000000  1.000000  1.000000  0.563676
4  1.000000  0.942308  0.996711  0.804149
5  0.264463  0.838629  0.814967  0.909310
6  0.636364  0.846990  0.786184  0.929571
          0         1         2         3
0 -0.905383  0.635863  0.464531  0.798149
1  0.604678 -1.587675 -2.193167  0.369390
2 -0.516428 -1.304030  0.147406 -2.078279
3 -1.111301  0.784628  0.684625 -0.456906
4  1.657146  0.647765  0.675159  0.234796
5 -0.379150  0.401807  0.152139  0.537286
6  0.650438  0.421642  0.069308  0.595564

附:代码中使用到的normalization_data.xls点击此处本站下载

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

更多精彩内容其他人还在看

python进行TCP端口扫描的实现

这篇文章主要介绍了python进行TCP端口扫描的实现,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python简单获取二维数组行列数的方法示例

这篇文章主要介绍了Python简单获取二维数组行列数的方法,结合实例形式分析了Python基于numpy模块的二维数组相关运算技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现的字典排序操作示例【按键名key与键值value排序】

这篇文章主要介绍了Python实现的字典排序操作,结合实例形式分析了Python针对字典分别按照键名key与键值value进行排序的相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python类装饰器实现方法详解

这篇文章主要介绍了Python类装饰器实现方法,结合实例形式较为详细的分析了Python类装饰器的相关概念、原理、实现方法与使用技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

使用python对文件中的单词进行提取的方法示例

这篇文章主要介绍了使用python对文件中的单词进行提取的方法示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
收藏 0 赞 0 分享

Python函数装饰器实现方法详解

这篇文章主要介绍了Python函数装饰器实现方法,结合实例形式较为详细的分析了Python函数装饰器的概念、功能、用法及相关操作注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

python 删除字符串中连续多个空格并保留一个的方法

今天小编就为大家分享一篇python 删除字符串中连续多个空格并保留一个的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python 文本单词提取和词频统计的实例

今天小编就为大家分享一篇python 文本单词提取和词频统计的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python装饰器基础概念与用法详解

这篇文章主要介绍了Python装饰器基础概念与用法,结合实例形式详细分析了Python装饰器的概念、功能、用法及相关操作注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

对python 读取线的shp文件实例详解

今天小编就为大家分享一篇对python 读取线的shp文件实例详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享
查看更多