Python中使用装饰器来优化尾递归的示例

所属分类: 脚本专栏 / python 阅读数: 785
收藏 0 赞 0 分享

尾递归简介
尾递归是函数返回最后一个操作是递归调用,则该函数是尾递归。
递归是线性的比如factorial函数每一次调用都会创建一个新的栈(last-in-first-out)通过不断的压栈,来创建递归, 很容易导致栈的溢出。而尾递归则使用当前栈通过数据覆盖来优化递归函数。
阶乘函数factorial, 通过把计算值传递的方法完成了尾递归。但是python不支出编译器优化尾递归所以当递归多次的话还是会报错(学习用)。

eg:

def factorial(n, x):
  if n == 0:
    return x
  else:
    return factorial(n-1, n*x)

print factorial(5, 1) # 120

尾递归优化
这里用到了斐波那契数来作为例子.线性递归的算法由于太过一低效就被我们Pass掉了,我们先来看尾递过方式的调用:

(n,b1=1,b2=1,c=3):
 if n<3:
  return 1
 else:
  if n==c:
   return b1+b2
  else:
   return Fib(n,b1=b2,b2=b1+b2,c=c+1)

这段程序我们来测试一下,调用 Fib(1001)结果:

>>> def Fib(n,b1=1,b2=1,c=3):

...  if n<3:

...   return 1

...  else:

...   if n==c:

...    return b1+b2

...   else:

...    return Fib(n,b1=b2,b2=b1+b2,c=c+1)

... 

>>> Fib(1001)

70330367711422815821835254877183549770181269836358732742604905087154537118196933579742249494562611733487750449241765991088186363265450223647106012053374121273867339111198139373125598767690091902245245323403501L

>>> 

如果我们用Fib(1002),结果,茶几了,如下:

 .....

 File "<stdin>", line 8, in Fib

 File "<stdin>", line 8, in Fib

 File "<stdin>", line 8, in Fib

 File "<stdin>", line 8, in Fib

 File "<stdin>", line 8, in Fib

 File "<stdin>", line 8, in Fib

RuntimeError: maximum recursion depth exceeded

>>> 

好了,现在我们来尾递归优化

我们给刚才的Fib函数增加一个Decorator,如下:

@tail_call_optimized
def Fib(n,b1=1,b2=1,c=3):
 if n<3:
  return 1
 else:
  if n==c:
   return b1+b2
  else:
   return Fib(n,b1=b2,b2=b1+b2,c=c+1)

 
恩,就是这个@tail_call_optimized的装饰器 ,这个装饰器使Python神奇的打破了调用栈的限制。

这下即使我们Fib(20000),也能在780ms跑出结果(780ms是以前博文提到那台2000元的上网本跑出来的结果)

不卖关子了,下面我们来看看这段神奇的代码: 

class TailRecurseException: 
 def __init__(self, args, kwargs): 
 self.args = args 
 self.kwargs = kwargs 
 
def tail_call_optimized(g): 
 """ 
 This function decorates a function with tail call 
 optimization. It does this by throwing an exception 
 if it is it's own grandparent, and catching such 
 exceptions to fake the tail call optimization. 
 
 This function fails if the decorated 
 function recurses in a non-tail context. 
 """ 
 def func(*args, **kwargs): 
 f = sys._getframe() 
 if f.f_back and f.f_back.f_back and f.f_back.f_back.f_code == f.f_code: 
  raise TailRecurseException(args, kwargs) 
 else: 
  while 1: 
  try: 
   return g(*args, **kwargs) 
  except TailRecurseException, e: 
   args = e.args 
   kwargs = e.kwargs 
 func.__doc__ = g.__doc__ 
 return func

使用的方法前面已经展示了,令我感到大开眼界的是,作者用了抛出异常然后自己捕获的方式来打破调用栈的增长,简直是太匪夷所思了。而且效率问题,和直接尾递归Fib相比大概造成了五倍的时间开销。

最后很不可思议的,尾递归优化的目的达成了。

更多精彩内容其他人还在看

python中seaborn包常用图形使用详解

今天小编就为大家分享一篇python中seaborn包常用图形使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy:找到指定元素的索引示例

今天小编就为大家分享一篇numpy:找到指定元素的索引示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python实现图片上添加图片

这篇文章主要为大家详细介绍了python实现图片上添加图片,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

从numpy数组中取出满足条件的元素示例

今天小编就为大家分享一篇从numpy数组中取出满足条件的元素示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python实现图片添加文字

这篇文章主要为大家详细介绍了Python实现图片添加文字,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

python实现在多维数组中挑选符合条件的全部元素

今天小编就为大家分享一篇python实现在多维数组中挑选符合条件的全部元素,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python如何使用BeautifulSoup爬取网页信息

这篇文章主要介绍了Python如何使用BeautifulSoup爬取网页信息,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

浅谈python已知元素,获取元素索引(numpy,pandas)

今天小编就为大家分享一篇浅谈python已知元素,获取元素索引(numpy,pandas),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy ndarray 按条件筛选数组,关联筛选的例子

今天小编就为大家分享一篇numpy ndarray 按条件筛选数组,关联筛选的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python pickle模块实现对象序列化

这篇文章主要介绍了Python pickle模块实现对象序列化,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多