浅谈java实现背包算法(0-1背包问题)

所属分类: 软件编程 / java 阅读数: 23
收藏 0 赞 0 分享

0-1背包的问题

背包问题(Knapsack problem)是一种组合优化的NP完全问题。问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。问题的名称来源于如何选择最合适的物品放置于给定背包中。

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

f[i][v]=max{ f[i-1][v], f[i-1][v-w[i]]+v[i] }。

public class Bag {

  static class Item {// 定义一个物品
    String id; // 物品id
    int size = 0;// 物品所占空间
    int value = 0;// 物品价值

    static Item newItem(String id, int size, int value) {
      Item item = new Item();
      item.id = id;
      item.size = size;
      item.value = value;
      return item;
    }

    public String toString() {
      return this.id;
    }
  }

  static class OkBag { // 定义一个打包方式
    List<Item> Items = new ArrayList<Item>();// 包里的物品集合

    OkBag() {
    }

    int getValue() {// 包中物品的总价值
      int value = 0;
      for (Item item : Items) {
        value += item.value;
      }
      return value;
    };

    int getSize() {// 包中物品的总大小
      int size = 0;
      for (Item item : Items) {
        size += item.size;
      }
      return size;
    };

    public String toString() {
      return String.valueOf(this.getValue()) + " ";
    }
  }

  // 可放入包中的备选物品
  static Item[] sourceItems = { Item.newItem("4号球", 4, 5), Item.newItem("5号球", 5, 6), Item.newItem("6号球", 6, 7) };
  static int bagSize = 10; // 包的空间
  static int itemCount = sourceItems.length; // 物品的数量

  // 保存各种情况下的最优打包方式 第一维度为物品数量从0到itemCount,第二维度为包裹大小从0到bagSize
  static OkBag[][] okBags = new OkBag[itemCount + 1][bagSize + 1];

  static void init() {
    for (int i = 0; i < bagSize + 1; i++) {
      okBags[0][i] = new OkBag();
    }

    for (int i = 0; i < itemCount + 1; i++) {
      okBags[i][0] = new OkBag();
    }
  }

  static void doBag() {
    init();
    for (int iItem = 1; iItem <= itemCount; iItem++) {
      for (int curBagSize = 1; curBagSize <= bagSize; curBagSize++) {
        okBags[iItem][curBagSize] = new OkBag();
        if (sourceItems[iItem - 1].size > curBagSize) {// 当前物品大于包空间.肯定不能放入包中.
          okBags[iItem][curBagSize].Items.addAll(okBags[iItem - 1][curBagSize].Items);
        } else {
          int notIncludeValue = okBags[iItem - 1][curBagSize].getValue();// 不放当前物品包的价值
          int freeSize = curBagSize - sourceItems[iItem - 1].size;// 放当前物品包剩余空间
          int includeValue = sourceItems[iItem - 1].value + okBags[iItem - 1][freeSize].getValue();// 当前物品价值+放了当前物品后剩余包空间能放物品的价值
          if (notIncludeValue < includeValue) {// 放了价值更大就放入.
            okBags[iItem][curBagSize].Items.addAll(okBags[iItem - 1][freeSize].Items);
            okBags[iItem][curBagSize].Items.add(sourceItems[iItem - 1]);
          } else {// 否则不放入当前物品
            okBags[iItem][curBagSize].Items.addAll(okBags[iItem - 1][curBagSize].Items);
          }
        }

      }
    }
  }

  public static void main(String[] args) {
    Bag.doBag();
    for (int i = 0; i < Bag.itemCount + 1; i++) {// 打印所有方案中包含的物品
      for (int j = 0; j < Bag.bagSize + 1; j++) {
        System.out.print(Bag.okBags[i][j].Items);
      }
      System.out.println("");
    }

    for (int i = 0; i < Bag.itemCount + 1; i++) {// 打印所有方案中包的总价值
      for (int j = 0; j < Bag.bagSize + 1; j++) {
        System.out.print(Bag.okBags[i][j]);
      }
      System.out.println("");
    }

    OkBag okBagResult = Bag.okBags[Bag.itemCount][Bag.bagSize];
    System.out.println("最终结果为:" + okBagResult.Items.toString() + okBagResult);

  }

}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Java的面向对象编程基本概念学习笔记整理

这篇文章主要介绍了Java的面向对象编程基本概念学习笔记整理,包括类与方法以及多态等支持面向对象语言中的重要特点,需要的朋友可以参考下
收藏 0 赞 0 分享

Eclipse下编写java程序突然不会自动生成R.java文件和包的解决办法

这篇文章主要介绍了Eclipse下编写java程序突然不会自动生成R.java文件和包的解决办法 的相关资料,需要的朋友可以参考下
收藏 0 赞 0 分享

基于Java实现杨辉三角 LeetCode Pascal's Triangle

这篇文章主要介绍了基于Java实现杨辉三角 LeetCode Pascal's Triangle的相关资料,需要的朋友可以参考下
收藏 0 赞 0 分享

Java中Spring获取bean方法小结

Spring是一个轻量级的控制反转(IoC)和面向切面(AOP)的容器框架,如何在程序中获取Spring配置的bean呢?下面通过本文给大家介绍Java中Spring获取bean方法小结,对spring获取bean方法相关知识感兴趣的朋友一起学习吧
收藏 0 赞 0 分享

如何计算Java对象占用了多少空间?

在Java中没有sizeof运算符,所以没办法知道一个对象到底占用了多大的空间,但是在分配对象的时候会有一些基本的规则,我们根据这些规则大致能判断出来对象大小,需要的朋友可以参考下
收藏 0 赞 0 分享

剖析Java中的事件处理与异常处理机制

这篇文章主要介绍了Java中的事件处理与异常处理机制,讲解Java是如何对事件或者异常作出响应以及定义异常的一些方法,需要的朋友可以参考下
收藏 0 赞 0 分享

详解Java的Struts2框架的结构及其数据转移方式

这篇文章主要介绍了详解Java的Struts2框架的结构及其数据转移方式,Struts框架是Java的SSH三大web开发框架之一,需要的朋友可以参考下
收藏 0 赞 0 分享

Java封装好的mail包发送电子邮件的类

本文给大家分享了2个java封装好的mail包发送电子邮件的类,并附上使用方法,小伙伴们可以根据自己的需求自由选择。
收藏 0 赞 0 分享

在Java的Struts中判断是否调用AJAX及用拦截器对其优化

这篇文章主要介绍了在Java的Struts中判断是否调用AJAX及用拦截器对其优化的方法,Struts框架是Java的SSH三大web开发框架之一,需要的朋友可以参考下
收藏 0 赞 0 分享

java多线程Future和Callable类示例分享

JAVA多线程实现方式主要有三种:继承Thread类、实现Runnable接口、使用ExecutorService、Callable、Future实现有返回结果的多线程。其中前两种方式线程执行完后都没有返回值,只有最后一种是带返回值的。今天我们就来研究下Future和Callab
收藏 0 赞 0 分享
查看更多