Unity shader实现移动端模拟深度水效果

所属分类: 软件编程 / C#教程 阅读数: 52
收藏 0 赞 0 分享

本文实例为大家分享了Unity shader实现移动端模拟深度水的具体代码,供大家参考,具体内容如下

描述:

在网上看到很多效果很好的水,比如根据水的深度,颜色有深浅变化,能让水变得更真实,但是又会涉及到比较复杂的计算,在移动端上面还是有些吃力的。

最近研究了一下,想在移动端上面模拟这样的效果 :

1 水的深浅透明度变化

2 水的深浅颜色变化

3 水上的阴影模拟(大面积的水通过烘焙比较浪费烘焙图)

根据上面的3点,可以通过一张黑白图的rg通道来实现深浅以及阴影的模拟 效果如下

如图,浅色的偏绿,深色的偏蓝 ,颜色可以手动调节,左边为阴影位置

代码如下:

Shader "Game_XXX/whater"
{
 Properties 
 {
 _WaterTex ("Normal Map (RGB), Foam (A)", 2D) = "white" {}
 _AlphaTex("AlphaTex", 2D) = "black" {}
 _shadowLight ("shadowLight",range(0,1)) = 0
 _Tiling ("Wave Scale", Range(0.00025, 0.007)) = 0.25
 _WaveSpeed("Wave Speed", Float) = 0.4
 _SpecularRatio ("Specular Ratio", Range(10,500)) = 200
 _outSideColor("outSideColor",Color) = (0,0,0,0)
 _outSideLight("outSideLight",Range(0,10))=1
 _inSideColor("inSideColor",Color) = (0,0,0,0)
 _inSideLight("intSideLight",Range(0,10))=1
 _Alpha("Alpha",Range(0,1)) = 1
 //模拟灯光颜色
 _LightColorSelf ("LightColorSelf",Color) = (1,1,1,1)
 //模拟灯光方向
 _LightDir ("LightDir",vector) = (0,1,0,0)
 //高光强度
 _specularLight("specularLight",range(0.1,2)) =1 
 }
 
 SubShader { 
 Tags {
 "Queue"="Transparent-200"
 "RenderType"="Transparent" 
 "IgnoreProjector" = "True"
 "LightMode" = "ForwardBase"
 }
 LOD 250
 Pass
 {
 
 ZWrite Off
 Blend SrcAlpha OneMinusSrcAlpha
 CGPROGRAM
 
 #pragma vertex Vert
 #pragma fragment Frag
 #include "UnityCG.cginc"
 
 float _Tiling;
 float _WaveSpeed;
 float _SpecularRatio;
 sampler2D _WaterTex;
 sampler2D _AlphaTex;
 float4 _LightColorSelf;
 float4 _LightDir;
 float4 _outSideColor;
 float _outSideLight;
 float4 _inSideColor;
 float _inSideLight;
 float _shadowLight;
 float _specularLight;
 float _Alpha;
 
 struct v2f
 {
 float4 position : POSITION;
 float3 worldView : TEXCOORD0;
 float3 tilingAndOffset:TEXCOORD2;
 float3x3 tangentTransform:TEXCOORD4; 
 float2 alphaUV :TEXCOORD7;
 
 };
 
 
 
 v2f Vert(appdata_full v)
 {
 v2f o;
 float4 worldPos = mul(unity_ObjectToWorld, v.vertex);
 //视向量(世界空间)
 o.worldView = -normalize(worldPos - _WorldSpaceCameraPos);
 o.position = UnityObjectToClipPos(v.vertex);
 //uv动画
 o.tilingAndOffset.z =frac( _Time.x * _WaveSpeed);//frac :返回标量或矢量的小数
 o.tilingAndOffset.xy = worldPos.xz*_Tiling;
 o.alphaUV = v.texcoord;
 //求世界法线三件套 
 float3 normal =normalize( UnityObjectToWorldNormal(v.normal)); 
    float3 tangentDir = normalize( mul( unity_ObjectToWorld, float4( v.tangent.xyz, 0.0 ) ).xyz );//切线空间转化为世界空间 
    float3 bitangentDir = normalize(cross(normal, tangentDir) * v.tangent.w);//切线 法线 计算副切线 
 
 o.tangentTransform = float3x3( tangentDir, bitangentDir, normal); 
 return o;
 }
 
 float4 Frag(v2f i):COLOR
 {
 
  
 
  //法线采样
  fixed3 BumpMap01 = UnpackNormal(tex2D(_WaterTex,i.tilingAndOffset.xy + i.tilingAndOffset.z ));
  fixed3 BumpMap02 = UnpackNormal(tex2D(_WaterTex,i.tilingAndOffset.xy*1.1 - i.tilingAndOffset.z));
  //两张法线相混合
  //fixed3 N1 =saturate( normalize(mul( BumpMap01.rgb, i.tangentTransform )));
  //fixed3 N2 =saturate( normalize(mul( BumpMap02.rgb, i.tangentTransform )));
  //fixed3 worldNormal = N1 - float3(N2.x,0,N2.z);
 
  fixed3 N1 = normalize(mul( BumpMap01.rgb, i.tangentTransform ));
  fixed3 N2 = normalize(mul( BumpMap02.rgb, i.tangentTransform ));
  fixed3 worldNormal = N1*0.5 +N2*0.5;
 
 
 
 
  float LdotN = dot(worldNormal, _LightDir.xyz); //_LightDir为模拟灯光
 
 
  //高光 
  float dotSpecular = dot(worldNormal, normalize( i.worldView+_LightDir.xyz));
  fixed3 specularReflection = pow(saturate(dotSpecular), _SpecularRatio)*_specularLight;
 
 
  //通道贴图采样
  fixed4 alphaTex = tex2D (_AlphaTex,i.alphaUV);
  //模拟灯光的颜色 * 漫反射系数= 基础水的颜色
  fixed4 col =_LightColorSelf*2 * saturate (LdotN) ;
  //用alpha贴图的r通道来模拟水的深浅的颜色,白色为深色,黑色为浅色 ,同时乘以想要的颜色
  col.rgb = col.rgb * alphaTex.r *_inSideColor * _inSideLight + col.rgb * (1-alphaTex.r) * _outSideColor *_outSideLight + specularReflection;
 
  //控制透明度,根据alpha的r通道 来控制深浅的透明度,深色的透明度小 浅色的透明度大
  col.a = _Alpha * alphaTex.r;
 
  //手动绘制阴影 用alpha贴图的g通道 跟col相乘 来模拟阴影 
  alphaTex.g = saturate(alphaTex.g + _shadowLight);
  col.rgb *= alphaTex.g;
  return col;
 }
  ENDCG 
  } 
 }
 
 FallBack "Diffuse"
}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

C#基础:Dispose()、Close()、Finalize()的区别详解

本篇文章是对c#中的Dispose()、Close()、Finalize()的区别进行了详细的分析介绍,需要的朋友参考下
收藏 0 赞 0 分享

C#字符串常见操作总结详解

本篇文章是对C#中字符串的常见操作进行了详细的总结介绍,需要的朋友参考下
收藏 0 赞 0 分享

c# 引用类型与值类型的区别详解

本篇文章是对c#中引用类型与值类型的区别进行了详细的分析介绍,需要的朋友参考下
收藏 0 赞 0 分享

c# 实现IComparable、IComparer接口、Comparer类的详解

本篇文章是对c#中实现IComparable、IComparer接口、Comparer类进行了详细的分析详解,需要的朋友参考下
收藏 0 赞 0 分享

深入c# 类和结构的区别总结详解

本篇文章是对c#中类和结构的区别进行了详细的分析介绍,需要的朋友参考下
收藏 0 赞 0 分享

解析C#自定义控件的制作与使用实例的详解

本篇文章是对C#中自定义控件的制作与使用实例进行了详细的分析介绍,需要的朋友参考下
收藏 0 赞 0 分享

C#实现路由器断开连接,更改公网ip的实例代码

C#实现路由器断开连接,更改公网ip的实例代码,需要的朋友可以参考一下
收藏 0 赞 0 分享

C#中使用IrisSkin2.dll美化WinForm程序界面的方法

这篇文章主要介绍了c#中使用IrisSkin2.dll美化WinForm程序界面的实现方法,需要的朋友可以参考下
收藏 0 赞 0 分享

.net C# 实现任意List的笛卡尔乘积算法代码

笛卡尔(Descartes)乘积又叫直积。假设集合A={a,b},集合B={0,1,2},则两个集合的笛卡尔积为{(a,0),(a,1),(a,2),(b,0),(b,1), (b,2)}。
收藏 0 赞 0 分享

C#中实现任意List的全组合算法代码

这篇文章主要是介绍了.net C# 实现任意List的全组合算法实现代码,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多