Hadoop 2.x伪分布式环境搭建详细步骤

所属分类: 数据库 / 数据库其它 阅读数: 130
收藏 0 赞 0 分享

本文以图文结合的方式详细介绍了Hadoop 2.x伪分布式环境搭建的全过程,供大家参考,具体内容如下

1、修改hadoop-env.sh、yarn-env.sh、mapred-env.sh

方法:使用notepad++(beifeng用户)打开这三个文件

添加代码:export JAVA_HOME=/opt/modules/jdk1.7.0_67

2、修改core-site.xml、hdfs-site.xml、yarn-site.xml、mapred-site.xml配置文件

1)修改core-site.xml

<configuration>
  <property>
    <name>fs.defaultFS</name>
    <value>hdfs://Hadoop-senior02.beifeng.com:8020</value>
  </property>
  <property>
    <name>hadoop.tmp.dir</name>
    <value>/opt/modules/hadoop-2.5.0/data</value>
  </property>
</configuration>

2)修改hdfs-site.xml

<configuration>
  <property>
    <name>dfs.replication</name>
    <value>1</value>
  </property>
  <property>
    <name>dfs.namenode.http-address</name>
    <value>Hadoop-senior02.beifeng.com:50070</value>
  </property>
</configuration>

3)修改yarn-site.xml

<configuration>
  <property>
    <name>yarn.nodemanager.aux-services</name>
    <value>mapreduce_shuffle</value>
  </property>
  <property>
    <name>yarn.resourcemanager.hostname</name>
    <value>Hadoop-senior02.beifeng.com</value>
  </property>
  <property>
    <name>yarn.log-aggregation-enable</name>
    <value>true</value>
  </property>
  <property>
    <name>yarn.log-aggregation.retain-seconds</name>
    <value>86400</value>
  </property>
</configuration>

4)修改mapred-site.xml

<configuration>
  <property>
    <name>mapreduce.framework.name</name>
    <value>yarn</value>
  </property>
  <property>
    <name>mapreduce.jobhistory.webapp.address</name>
    <value>0.0.0.0:19888</value>
  </property>
</configuration>

3、启动hdfs

1)格式化namenode:$ bin/hdfs namenode -format

2)启动namenode:$sbin/hadoop-daemon.sh start namenode

3)启动datanode:$sbin/hadoop-daemon.sh start datanode

4)hdfs监控web页面:http://hadoop-senior02.beifeng.com:50070

4、启动yarn

1)启动resourcemanager:$sbin/yarn-daemon.sh start resourcemanager

2)启动nodemanager:sbin/yarn-daemon.sh start nodemanager

3)yarn监控web页面:http://hadoop-senior02.beifeng.com:8088

5、测试wordcount jar包

1)定位路径:/opt/modules/hadoop-2.5.0

2)代码测试:bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.0.jar wordcount /input/sort.txt /output6/

运行过程:

16/05/08 06:39:13 INFO client.RMProxy: Connecting to ResourceManager at Hadoop-senior02.beifeng.com/192.168.241.130:8032
16/05/08 06:39:15 INFO input.FileInputFormat: Total input paths to process : 1
16/05/08 06:39:15 INFO mapreduce.JobSubmitter: number of splits:1
16/05/08 06:39:15 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1462660542807_0001
16/05/08 06:39:16 INFO impl.YarnClientImpl: Submitted application application_1462660542807_0001
16/05/08 06:39:16 INFO mapreduce.Job: The url to track the job: http://Hadoop-senior02.beifeng.com:8088/proxy/application_1462660542807_0001/
16/05/08 06:39:16 INFO mapreduce.Job: Running job: job_1462660542807_0001
16/05/08 06:39:36 INFO mapreduce.Job: Job job_1462660542807_0001 running in uber mode : false
16/05/08 06:39:36 INFO mapreduce.Job: map 0% reduce 0%
16/05/08 06:39:48 INFO mapreduce.Job: map 100% reduce 0%
16/05/08 06:40:04 INFO mapreduce.Job: map 100% reduce 100%
16/05/08 06:40:04 INFO mapreduce.Job: Job job_1462660542807_0001 completed successfully
16/05/08 06:40:04 INFO mapreduce.Job: Counters: 49

3)结果查看:bin/hdfs dfs -text /output6/par*

运行结果:

hadoop 2
jps 1
mapreduce 2
yarn 1

6、MapReduce历史服务器

1)启动:sbin/mr-jobhistory-daemon.sh start historyserver

2)web ui界面:http://hadoop-senior02.beifeng.com:19888

7、hdfs、yarn、mapreduce功能

1)hdfs:分布式文件系统,高容错性的文件系统,适合部署在廉价的机器上。

hdfs是一个主从结构,分为namenode和datanode,其中namenode是命名空间,datanode是存储空间,datanode以数据块的形式进行存储,每个数据块128M

2)yarn:通用资源管理系统,为上层应用提供统一的资源管理和调度。

yarn分为resourcemanager和nodemanager,resourcemanager负责资源调度和分配,nodemanager负责数据处理和资源

3)mapreduce:MapReduce是一种计算模型,分为Map(映射)和Reduce(归约)。

map将每一行数据处理后,以键值对的形式出现,并传给reduce;reduce将map传过来的数据进行汇总和统计。

以上就是本文的全部内容,希望对大家的学习有所帮助。

更多精彩内容其他人还在看

sql 左连接和右连接的使用技巧(left join and right join)

今天做项目,发现左右连接是不一样的。主要是说明了区别,是不是必须用左连接或右连接,大家可以根据需要选择。
收藏 0 赞 0 分享

mysql "group by"与"order by"的研究--分类中最新的内容

这两天让一个数据查询难了。主要是对group by 理解的不够深入。才出现这样的情况
收藏 0 赞 0 分享

MSSQL转MySQL数据库的实际操作记录

今天把一个MSSQL的数据库转成MySQL,在没有转换工具的情况下,对于字段不多的数据表我用了如下手功转换的方法,还算方便。MSSQL使用企业管理器操作,MySQL用phpmyadmin操作。
收藏 0 赞 0 分享

程序员应该知道的数据库设计的两个误区

在几乎所有的企业级应用程序中,包括各种MIS、ERP、CRM等等,都会使用数据库,这样的好处是显而易见的,很容易地实现了数据层和业务逻辑层的分离,而且对于性能的优化也在一定程度上提供了便利。
收藏 0 赞 0 分享

大数据量,海量数据处理方法总结

大数据量的问题是很多面试笔试中经常出现的问题,比如baidu google 腾讯这样的一些涉及到海量数据的公司经常会问到。
收藏 0 赞 0 分享

MDAC2.8 安装问题与解决方法

根据Windows XP的版本不同,有的版本需要安装MDAC2.8,一般Windows XP SP2或以上版本就不需要安装。不需要安装时系统会提示“MDAC 2.8 RTM 与此版本 Windows 不兼容。现在它的所有功能都成为 Windows 的一部分”。
收藏 0 赞 0 分享

SQLServer 2005 和Oracle 语法的一点差异小结

Microsoft SQL Server 和Oracle 语法的一点差异小结,需要的朋友可以参考下。
收藏 0 赞 0 分享

数据库设计规范化的五个要求 推荐收藏

通常情况下,可以从两个方面来判断数据库是否设计的比较规范。一是看看是否拥有大量的窄表,二是宽表的数量是否足够的少。
收藏 0 赞 0 分享

数据库为何要建立索引的原因说明

数据库索引是为了增加查询速度而对表字段附加的一种标识。见过很多人机械的理解索引的概念,认为增加索引只有好处没有坏处。
收藏 0 赞 0 分享

数据库测试 实用技巧及测试方法

软件应用程序已经离不开数据库。无论是在Web、桌面应用、客户端服务器、企业和个人业务,都需要数据库在后端操作。
收藏 0 赞 0 分享
查看更多