python利用递归方法实现求集合的幂集

所属分类: 脚本专栏 / python 阅读数: 1684
收藏 0 赞 0 分享

什么是集合的幂集?

就是原集合中所有的子集(bai包括全集du和空集)构成的集族。可数集是zhi最小的无限集; 它的幂集和实数dao集一一对应(也称同势),是不可数集。 

不是所有不可数集都和实数集等势,集合的势可以无限的大。如实数集的幂集也是不可数集,但它的势比实数集大。 设X是一个有限集,|X| = k,则X的幂集的势为2的k次方。

代码

def powSet(S):
 #创建列表a存储S中的元素
 a=[]
 for i in S:
  a.append(i)
 #判断S中是否只有一个元素,作为递归的终点
 if len(a)==1:
  return set([frozenset(),frozenset(a)])
 
 powset=set()
 #遍历S中的每一个元素
 	for i in range(len(a)):
  S.remove(a[i])
  temp = set()
 #取S中的这一个元素去掉,得到集合S的下一层(相当于S-1),认为S-1幂集已知。
 #将去掉的元素与S-1幂集中每一个元素都求并,得到新集合temp,temp和S-1的幂集求并便得到S的幂集
  for j in powSet(S):
   temp.add(j.union({a[i]}))
   powset = powSet(S).union(temp)
  S.add(a[i])
 return powset
 #验证
s=set([1,2,3])
print(powSet(s))

#结果
{{frozenset({2}), frozenset({2, 3}), frozenset({1, 2}), frozenset({1, 2, 3}), frozenset({3}), frozenset({1}), frozenset(), frozenset({1, 3})}}

需要知识

幂集的概念

python set 和 frozenset 数据类型

心得体会

笔者在写代码时遇到的问题是认为powSet(S-1)(S-1代表S中去掉任一个元素)就完完全全地替代了真正去掉那一个随机元素的元素组成的幂集。

实际上这样是不完全的,因为设置的递归规则有缺陷,不可能完全遍历所有情况。

解决:借助于集合元素的不可重复添加这一特性,我们可以遍历遍历所有S中的元素,都让它们进行一次递归操作,这样做虽然会产生n(S)次重复,但是它可以考虑到所有情况。

更多精彩内容其他人还在看

使用keras实现非线性回归(两种加激活函数的方式)

这篇文章主要介绍了使用keras实现非线性回归(两种加激活函数的方式),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python线性插值解析

这篇文章主要介绍了python线性插值解析,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python中flatten( ),matrix.A用法说明

这篇文章主要介绍了Python中flatten( ),matrix.A用法说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python cv2.resize函数high和width注意事项说明

这篇文章主要介绍了python cv2.resize函数high和width注意事项说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python 图像插值 最近邻、双线性、双三次实例

这篇文章主要介绍了python 图像插值 最近邻、双线性、双三次实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python-openCV开运算实例

这篇文章主要介绍了Python-openCV开运算实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python使用opencv resize图像不进行插值的操作

这篇文章主要介绍了python使用opencv resize图像不进行插值的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

使用Python-OpenCV消除图像中孤立的小区域操作

这篇文章主要介绍了使用Python-OpenCV消除图像中孤立的小区域操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python右对齐的实例方法

在本篇文章里小编给大家整理的是关于python右对齐的实例方法,有需要的朋友们可以学习参考下。
收藏 0 赞 0 分享

python主要用于哪些方向

在本篇文章里小编给大家整理了一篇关于python用于的方向的相关文章,有需要的阅读下吧。
收藏 0 赞 0 分享
查看更多