Python装饰器结合递归原理解析

所属分类: 脚本专栏 / python 阅读数: 1962
收藏 0 赞 0 分享

代码如下:

import functools

def memoize(fn):
  print('start memoize')
  known = dict()
  
  @functools.wraps(fn)
  def memoizer(*args):
    if args not in known:
      print('memorize %s'%args)
      # known[args] = fn(*args)
    for k in known.keys():
        print('%s : %s'%(k, known[k]), end = ' ')
    print()
    # return known[args]
  return memoizer


@memoize
def nsum(n):
  print('now is %s'%n)
  assert (n >= 0), 'n must be >= 0'
  return 0 if n == 0 else n + nsum(n - 1)


@memoize
def fibonacci(n):
  assert (n >= 0), 'n must be >= 0'
  return n if n in (0, 1) else fibonacci(n - 1) + fibonacci(n - 2)

if __name__ == '__main__':
  print(nsum(10))
  print(fibonacci(10))

输出如下:

start memoize
start memoize
memorize 10

None
memorize 10

None

对比代码(把注释的地方去掉后)的输出:

start memoize
start memoize
memorize 10
now is 10
memorize 9
now is 9
memorize 8
now is 8
memorize 7
now is 7
memorize 6
now is 6
memorize 5
now is 5
memorize 4
now is 4
memorize 3
now is 3
memorize 2
now is 2
memorize 1
now is 1
memorize 0
now is 0
(0,) : 0
(0,) : 0 (1,) : 1
(0,) : 0 (1,) : 1 (2,) : 3
(0,) : 0 (1,) : 1 (2,) : 3 (3,) : 6
(0,) : 0 (1,) : 1 (2,) : 3 (3,) : 6 (4,) : 10 
(0,) : 0 (1,) : 1 (2,) : 3 (3,) : 6 (4,) : 10 (5,) : 15
(0,) : 0 (1,) : 1 (2,) : 3 (3,) : 6 (4,) : 10 (5,) : 15 (6,) : 21 
(0,) : 0 (1,) : 1 (2,) : 3 (3,) : 6 (4,) : 10 (5,) : 15 (6,) : 21 (7,) : 28
(0,) : 0 (1,) : 1 (2,) : 3 (3,) : 6 (4,) : 10 (5,) : 15 (6,) : 21 (7,) : 28 (8,) : 36
(0,) : 0 (1,) : 1 (2,) : 3 (3,) : 6 (4,) : 10 (5,) : 15 (6,) : 21 (7,) : 28 (8,) : 36 (9,) : 45 
(0,) : 0 (1,) : 1 (2,) : 3 (3,) : 6 (4,) : 10 (5,) : 15 (6,) : 21 (7,) : 28 (8,) : 36 (9,) : 45 (10,) : 55 

通过取消注释的对比,可以得到如下结论:

  • 装饰器memoize实际上对于函数nsum()只执行了第一次加载的时候的预处理,然后就是nsum = memoizer。
  • 装饰器的实质是通过functools.wraps(fn)获得函数的名字,便于nsum.__name__ ==nsum,并将参数传至memoize(*args),也就是*args。
  • 装饰器通过memory(),和外面的装饰器获得的函数,在内部对函数进行功能改造。在上例子中,通过known[args] = fn(*args)先执行fn函数,即上例子中nsum(10),然后就进入递归,t同时调用memoizer()和nsum()函数10次,且先memoizer再nsum,而且每次都在``known[args] = fn(*args)`进入递归,也就是每次nsum的执行,故,对于为什么打印konwn中的元素是集中在一起的解释就知道了,到了n == 0,才跳出递归,故,known的第一个元素是0,然后就循环往复。
  • 最后,其实,递归函数执行的是fn(*args),即nsum()。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python matplotlib模块及柱状图用法解析

这篇文章主要介绍了Python matplotlib模块及柱状图用法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

Python getattr()函数使用方法代码实例

这篇文章主要介绍了Python getattr()函数使用方法代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

Python 发送邮件方法总结

这篇文章主要介绍了Python 发送邮件的几种方法,帮助大家更好的理解和学习Python,感兴趣的朋友可以了解下
收藏 0 赞 0 分享

拿来就用!Python批量合并PDF的示例代码

这篇文章主要介绍了Python批量合并PDF的示例代码,帮助大家更好的理解和学习Python,感兴趣的朋友可以了解下
收藏 0 赞 0 分享

Python如何爬取b站热门视频并导入Excel

这篇文章主要介绍了Python如何爬取b站热门视频并导入Excel,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

Python进行统计建模

这篇文章主要介绍了Python进行统计建模的方法,帮助大家更好的理解和学习Python,感兴趣的朋友可以了解下
收藏 0 赞 0 分享

Python多线程的退出控制实现

这篇文章主要介绍了Python多线程的退出控制实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
收藏 0 赞 0 分享

如何在python中实现线性回归

这篇文章主要介绍了如何在python中实现线性回归,帮助大家更好的理解和学习Python,感兴趣的朋友可以了解下
收藏 0 赞 0 分享

python多线程semaphore实现线程数控制的示例

这篇文章主要介绍了python多线程semaphore实现线程数控制的示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
收藏 0 赞 0 分享

推荐值得学习的12款python-web开发框架

这篇文章主要介绍了值得学习的12款python-web开发框架,帮助大家更好的理解和学习Python web开发,感兴趣的朋友可以了解下
收藏 0 赞 0 分享
查看更多