Keras - GPU ID 和显存占用设定步骤

所属分类: 脚本专栏 / python 阅读数: 448
收藏 0 赞 0 分享

初步尝试 Keras (基于 Tensorflow 后端)深度框架时, 发现其对于 GPU 的使用比较神奇, 默认竟然是全部占满显存, 1080Ti 跑个小分类问题, 就一下子满了. 而且是服务器上的两张 1080Ti.

服务器上的多张 GPU 都占满, 有点浪费性能.

因此, 需要类似于 Caffe 等框架的可以设定 GPU ID 和显存自动按需分配.

实际中发现, Keras 还可以限制 GPU 显存占用量.

这里涉及到的内容有:

GPU ID 设定

GPU 显存占用按需分配

GPU 显存占用限制

GPU 显存优化

1. GPU ID 设定

#! -- coding: utf-8 --*--
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"

这里将 GPU ID 设为 1.

GPU ID 从 0 开始, GPUID=1 即表示第二块 GPU.

2. GPU 显存占用按需分配

#! -- coding: utf-8 --*--
import tensorflow as tf
import keras.backend.tensorflow_backend as ktf

# GPU 显存自动调用
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
session = tf.Session(config=config)
ktf.set_session(session)

3. GPU 显存占用限制

#! -- coding: utf-8 --*--
import tensorflow as tf
import keras.backend.tensorflow_backend as ktf

# 设定 GPU 显存占用比例为 0.3
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.3
session = tf.Session(config=config)
ktf.set_session(session )

这里虽然是设定了 GPU 显存占用的限制比例(0.3), 但如果训练所需实际显存占用超过该比例, 仍能正常训练, 类似于了按需分配.

设定 GPU 显存占用比例实际上是避免一定的显存资源浪费.

4. GPU ID 设定与显存按需分配

#! -- coding: utf-8 --*--
import os
import tensorflow as tf
import keras.backend.tensorflow_backend as ktf

# GPU 显存自动分配
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
#config.gpu_options.per_process_gpu_memory_fraction = 0.3
session = tf.Session(config=config)
ktf.set_session(session)

# 指定GPUID, 第一块GPU可用
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

5. 利用fit_generator最小化显存占用比例/数据Batch化

#! -- coding: utf-8 --*--

# 将内存中的数据分批(batch_size)送到显存中进行运算
def generate_arrays_from_memory(data_train, labels_train, batch_size):
  x = data_train
  y=labels_train
  ylen=len(y)
  loopcount=ylen // batch_size
  while True:
    i = np.random.randint(0,loopcount)
    yield x[i*batch_size:(i+1)*batch_size],y[i*batch_size:(i+1)*batch_size]

# load数据到内存
data_train=np.loadtxt("./data_train.txt")
labels_train=np.loadtxt('./labels_train.txt')
data_val=np.loadtxt('./data_val.txt')
labels_val=np.loadtxt('./labels_val.txt')

hist=model.fit_generator(generate_arrays_from_memory(data_train,
                           labels_train,
                           batch_size),
             steps_per_epoch=int(train_size/bs),
             epochs=ne,
             validation_data=(data_val,labels_val),
             callbacks=callbacks )

5.1 数据 Batch 化

#! -- coding: utf-8 --*--

def process_line(line): 
  tmp = [int(val) for val in line.strip().split(',')] 
  x = np.array(tmp[:-1]) 
  y = np.array(tmp[-1:]) 
  return x,y 

def generate_arrays_from_file(path,batch_size): 
  while 1: 
    f = open(path) 
    cnt = 0 
    X =[] 
    Y =[] 
    for line in f: 
      # create Numpy arrays of input data 
      # and labels, from each line in the file 
      x, y = process_line(line) 
      X.append(x) 
      Y.append(y) 
      cnt += 1 
      if cnt==batch_size: 
        cnt = 0 
        yield (np.array(X), np.array(Y)) 
        X = [] 
        Y = [] 
  f.close() 

补充知识:Keras+Tensorflow指定运行显卡以及关闭session空出显存

Step1: 查看GPU

watch -n 3 nvidia-smi #在命令行窗口中查看当前GPU使用的情况, 3为刷新频率

Step2: 导入模块

导入必要的模块

import os
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
from numba import cuda

Step3: 指定GPU

程序开头指定程序运行的GPU

os.environ['CUDA_VISIBLE_DEVICES'] = '1' # 使用单块GPU,指定其编号即可 (0 or 1or 2 or 3)
os.environ['CUDA_VISIBLE_DEVICES'] = '1,2,3' # 使用多块GPU,指定其编号即可 (引号中指定即可)

Step4: 创建会话,指定显存使用百分比

创建tensorflow的Session

config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.1 # 设定显存的利用率
set_session(tf.Session(config=config))

Step5: 释放显存

确保Volatile GPU-Util显示0%

程序运行完毕,关闭Session

K.clear_session() # 方法一:如果不关闭,则会一直占用显存

cuda.select_device(1) # 方法二:选择GPU1
cuda.close() #关闭选择的GPU

以上这篇Keras - GPU ID 和显存占用设定步骤就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

python2.7无法使用pip的解决方法(安装easy_install)

下面小编就为大家分享一篇python2.7无法使用pip的解决方法(安装easy_install),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python实现的计算马氏距离算法示例

这篇文章主要介绍了Python实现的计算马氏距离算法,简单说明了马氏距离算法原理,并结合实例形式分析了Python实现与使用马氏距离算法的相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

python逐行读写txt文件的实例讲解

下面小编就为大家分享一篇python逐行读写txt文件的实例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python批量读取txt文件为DataFrame的方法

下面小编就为大家分享一篇python批量读取txt文件为DataFrame的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python通过调用mysql存储过程实现更新数据功能示例

这篇文章主要介绍了Python通过调用mysql存储过程实现更新数据功能,结合实例形式分析了Python调用mysql存储过程实现更新数据的具体步骤与相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现的HMacMD5加密算法示例

这篇文章主要介绍了Python实现的HMacMD5加密算法,简单说明了HMAC-MD5加密算法的概念、原理并结合实例形式分析了Python实现HMAC-MD5加密算法的相关操作技巧,,末尾还附带了Java实现HMAC-MD5加密算法的示例,需要的朋友可以参考下
收藏 0 赞 0 分享

图解Python变量与赋值

Python是一门独特的语言,与C语言有很大区别,初学Python很多萌新表示对变量与赋值不理解,这里就大家介绍一下,需要的朋友可以参考下
收藏 0 赞 0 分享

Python中的并发处理之asyncio包使用的详解

本篇文章主要介绍了Python中的并发处理之asyncio包使用的详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python获取二维矩阵每列最大值的方法

下面小编就为大家分享一篇Python获取二维矩阵每列最大值的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy找出array中的最大值,最小值实例

下面小编就为大家分享一篇numpy找出array中的最大值,最小值实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享
查看更多