浅谈keras中的batch_dot,dot方法和TensorFlow的matmul

所属分类: 脚本专栏 / python 阅读数: 1048
收藏 0 赞 0 分享

概述

在使用keras中的keras.backend.batch_dot和tf.matmul实现功能其实是一样的智能矩阵乘法,比如A,B,C,D,E,F,G,H,I,J,K,L都是二维矩阵,中间点表示矩阵乘法,AG 表示矩阵A 和G 矩阵乘法(A 的列维度等于G 行维度),WX=Z

import keras.backend as K
import tensorflow as tf
import numpy as np

w = K.variable(np.random.randint(10,size=(10,12,4,5)))
k = K.variable(np.random.randint(10,size=(10,12,5,8)))
z = K.batch_dot(w,k)
print(z.shape) #(10, 12, 4, 8)

import keras.backend as K
import tensorflow as tf
import numpy as np

w = tf.Variable(np.random.randint(10,size=(10,12,4,5)),dtype=tf.float32)
k = tf.Variable(np.random.randint(10,size=(10,12,5,8)),dtype=tf.float32)
z = tf.matmul(w,k)
print(z.shape) #(10, 12, 4, 8)

示例

from keras import backend as K
a = K.ones((3,4,5,2))
b = K.ones((2,5,3,7))
c = K.dot(a, b)
print(c.shape)

会输出:

ValueError: Dimensions must be equal, but are 2 and 3 for ‘MatMul' (op: ‘MatMul') with input shapes: [60,2], [3,70].

from keras import backend as K
a = K.ones((3,4))
b = K.ones((4,5))
c = K.dot(a, b)
print(c.shape)#(3,5)

或者

import tensorflow as tf
a = tf.ones((3,4))
b = tf.ones((4,5))
c = tf.matmul(a, b)
print(c.shape)#(3,5)

如果增加维度:

from keras import backend as K
a = K.ones((2,3,4))
b = K.ones((7,4,5))
c = K.dot(a, b)
print(c.shape)#(2, 3, 7, 5)

这个矩阵乘法会沿着两个矩阵最后两个维度进行乘法,不是element-wise矩阵乘法

from keras import backend as K
a = K.ones((1, 2, 3 , 4))
b = K.ones((8, 7, 4, 5))
c = K.dot(a, b)
print(c.shape)#(1, 2, 3, 8, 7, 5)

keras的dot方法是Theano中的复制

from keras import backend as K
a = K.ones((1, 2, 4))
b = K.ones((8, 7, 4, 5))
c = K.dot(a, b)
print(c.shape)# (1, 2, 8, 7, 5).
from keras import backend as K
a = K.ones((9, 8, 7, 4, 2))
b = K.ones((9, 8, 7, 2, 5))
c = K.batch_dot(a, b)
print(c.shape) #(9, 8, 7, 4, 5)

或者

import tensorflow as tf
a = tf.ones((9, 8, 7, 4, 2))
b = tf.ones((9, 8, 7, 2, 5))
c = tf.matmul(a, b)
print(c.shape) #(9, 8, 7, 4, 5)

以上这篇浅谈keras中的batch_dot,dot方法和TensorFlow的matmul就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

python2.7无法使用pip的解决方法(安装easy_install)

下面小编就为大家分享一篇python2.7无法使用pip的解决方法(安装easy_install),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python实现的计算马氏距离算法示例

这篇文章主要介绍了Python实现的计算马氏距离算法,简单说明了马氏距离算法原理,并结合实例形式分析了Python实现与使用马氏距离算法的相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

python逐行读写txt文件的实例讲解

下面小编就为大家分享一篇python逐行读写txt文件的实例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python批量读取txt文件为DataFrame的方法

下面小编就为大家分享一篇python批量读取txt文件为DataFrame的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python通过调用mysql存储过程实现更新数据功能示例

这篇文章主要介绍了Python通过调用mysql存储过程实现更新数据功能,结合实例形式分析了Python调用mysql存储过程实现更新数据的具体步骤与相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现的HMacMD5加密算法示例

这篇文章主要介绍了Python实现的HMacMD5加密算法,简单说明了HMAC-MD5加密算法的概念、原理并结合实例形式分析了Python实现HMAC-MD5加密算法的相关操作技巧,,末尾还附带了Java实现HMAC-MD5加密算法的示例,需要的朋友可以参考下
收藏 0 赞 0 分享

图解Python变量与赋值

Python是一门独特的语言,与C语言有很大区别,初学Python很多萌新表示对变量与赋值不理解,这里就大家介绍一下,需要的朋友可以参考下
收藏 0 赞 0 分享

Python中的并发处理之asyncio包使用的详解

本篇文章主要介绍了Python中的并发处理之asyncio包使用的详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python获取二维矩阵每列最大值的方法

下面小编就为大家分享一篇Python获取二维矩阵每列最大值的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy找出array中的最大值,最小值实例

下面小编就为大家分享一篇numpy找出array中的最大值,最小值实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享
查看更多