pytorch快速搭建神经网络_Sequential操作

所属分类: 脚本专栏 / python 阅读数: 124
收藏 0 赞 0 分享

之前用Class类来搭建神经网络

class Neuro_net(torch.nn.Module):
  """神经网络"""
  def __init__(self, n_feature, n_hidden_layer, n_output):
    super(Neuro_net, self).__init__()
    self.hidden_layer = torch.nn.Linear(n_feature, n_hidden_layer)
    self.output_layer = torch.nn.Linear(n_hidden_layer, n_output)

  def forward(self, input):
    hidden_out = torch.relu(self.hidden_layer(input))
    out = self.output_layer(hidden_out)
    return out
  
net = Neuro_net(2, 10, 2)
print(net)

class类图结构:

使用torch.nn.Sequential() 快速搭建神经网络

net = torch.nn.Sequential(
  torch.nn.Linear(2, 10),
  torch.nn.ReLU(),
  torch.nn.Linear(10, 2)
)
print(net)

Sequential图结构

总结:

我们可以发现,使用torch.nn.Sequential会自动加入激励函数, 但是 class类net 中, 激励函数实际上是在 forward() 功能中才被调用的

使用class类中的torch.nn.Module,我们可以根据自己的需求改变传播过程

如果你需要快速构建或者不需要过多的过程,直接使用torch.nn.Sequential吧

补充知识:【PyTorch神经网络】使用Moudle和Sequential搭建神经网络

Module:

init中定义每个神经层的神经元个数,和神经元层数;

forward是继承nn.Moudle中函数,来实现前向反馈(加上激励函数)

# -*- coding: utf-8 -*-
# @Time  : 2019/11/5 10:43
# @Author : Chen
# @File  : neural_network_impl.py
# @Software: PyCharm
 
import torch
import torch.nn.functional as F
 
#data
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = x.pow(2) + 0.2 * torch.rand(x.size())
 
 
#第一种搭建方法:Module
# 其中,init中定义每个神经层的神经元个数,和神经元层数;
# forward是继承nn.Moudle中函数,来实现前向反馈(加上激励函数)
class Net(torch.nn.Module):
  def __init__(self):
    #继承__init__函数
    super(Net, self).__init__()
    #定义每层的形式
    #隐藏层线性输出feature->hidden
    self.hidden = torch.nn.Linear(1, 10)
    #输出层线性输出hidden->output
    self.predict = torch.nn.Linear(10, 1)
 
  #实现所有层的连接关系。正向传播输入值,神经网络分析输出值
  def forward(self, x):
    #x首先在隐藏层经过激励函数的计算
    x = F.relu(self.hidden(x))
    #到输出层给出预测值
    x = self.predict(x)
    return x
 
net = Net()
print(net)
 
print('\n\n')
 
#快速搭建:Sequential
#模板:net2 = torch.nn.Sequential()
 
net2 = torch.nn.Sequential(
  torch.nn.Linear(1, 10),
  torch.nn.ReLU(),
  torch.nn.Linear(10, 1)
)
print(net2)
 

以上这篇pytorch快速搭建神经网络_Sequential操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

python打印直角三角形与等腰三角形实例代码

这篇文章主要给大家介绍了关于python打印直角三角形与等腰三角形的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者使用python具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
收藏 0 赞 0 分享

基于python解线性矩阵方程(numpy中的matrix类)

这篇文章主要介绍了基于python解线性矩阵方程(numpy中的matrix类),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

vim自动补全插件YouCompleteMe(YCM)安装过程解析

这篇文章主要介绍了vim自动补全插件YouCompleteMe(YCM)安装过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python中@property和property函数常见使用方法示例

这篇文章主要介绍了python中@property和property函数常见使用方法,结合实例形式分析了Python @property和property函数功能、使用方法及相关操作注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

python中bytes和str类型的区别

这篇文章主要介绍了python中bytes和str类型的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

详解python中*号的用法

这篇文章主要介绍了python中*号的用法,文中通过代码给大家介绍了双星号(**)的用法,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python超时重新请求解决方案

这篇文章主要介绍了python超时重新请求解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python多继承(钻石继承)问题和解决方法简单示例

这篇文章主要介绍了python多继承(钻石继承)问题和解决方法,结合实例形式分析了Python多继承调用父类初始化方法相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

基于Python解密仿射密码

这篇文章主要介绍了基于Python解密仿射密码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

基于Python实现船舶的MMSI的获取(推荐)

工作中遇到一个需求,需要通过网站查询船舶名称得到MMSI码,网站来自船讯网。这篇文章主要介绍了基于Python实现船舶的MMSI的获取,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多