使用Keras画神经网络准确性图教程

所属分类: 脚本专栏 / python 阅读数: 1013
收藏 0 赞 0 分享

1.在搭建网络开始时,会调用到 keras.models的Sequential()方法,返回一个model参数表示模型

2.model参数里面有个fit()方法,用于把训练集传进网络。fit()返回一个参数,该参数包含训练集和验证集的准确性acc和错误值loss,用这些数据画成图表即可。

如:

history=model.fit(x_train, y_train, batch_size=32, epochs=5, validation_split=0.25) #获取数据
 
#########画图
acc = history.history['acc']  #获取训练集准确性数据
val_acc = history.history['val_acc'] #获取验证集准确性数据
loss = history.history['loss']   #获取训练集错误值数据
val_loss = history.history['val_loss'] #获取验证集错误值数据
epochs = range(1,len(acc)+1)
plt.plot(epochs,acc,'bo',label='Trainning acc')  #以epochs为横坐标,以训练集准确性为纵坐标
plt.plot(epochs,val_acc,'b',label='Vaildation acc') #以epochs为横坐标,以验证集准确性为纵坐标
plt.legend() #绘制图例,即标明图中的线段代表何种含义
 
plt.figure() #创建一个新的图表
plt.plot(epochs,loss,'bo',label='Trainning loss')
plt.plot(epochs,val_loss,'b',label='Vaildation loss')
plt.legend() ##绘制图例,即标明图中的线段代表何种含义
 
plt.show() #显示所有图表

得到效果:

完整代码:

import keras
from keras.datasets import mnist
from keras.layers import Conv2D, MaxPool2D, Dense, Flatten,Dropout
from keras.models import Sequential
import matplotlib.pyplot as plt
 
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(-1, 28, 28, 1)
x_test = x_test.reshape(-1, 28, 28, 1)
x_train = x_train / 255.
x_test = x_test / 255.
 
y_train = keras.utils.to_categorical(y_train)
y_test = keras.utils.to_categorical(y_test)
 
model = Sequential()
model.add(Conv2D(20,(5,5),strides=(1,1),input_shape=(28,28,1),padding='valid',activation='relu',kernel_initializer='uniform'))
model.add(MaxPool2D(pool_size=(2,2),strides=(2,2)))
model.add(Conv2D(64,(5,5),strides=(1,1),padding='valid',activation='relu',kernel_initializer='uniform'))
model.add(MaxPool2D(pool_size=(2,2),strides=(2,2)))
model.add(Flatten())
model.add(Dense(500,activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(10,activation='softmax'))
model.compile('sgd', loss='categorical_crossentropy', metrics=['accuracy']) #随机梯度下降
 
history=model.fit(x_train, y_train, batch_size=32, epochs=5, validation_split=0.25) #获取数据
 
#########画图
acc = history.history['acc']  #获取训练集准确性数据
val_acc = history.history['val_acc'] #获取验证集准确性数据
loss = history.history['loss']   #获取训练集错误值数据
val_loss = history.history['val_loss'] #获取验证集错误值数据
epochs = range(1,len(acc)+1)
plt.plot(epochs,acc,'bo',label='Trainning acc')  #以epochs为横坐标,以训练集准确性为纵坐标
plt.plot(epochs,val_acc,'b',label='Vaildation acc') #以epochs为横坐标,以验证集准确性为纵坐标
plt.legend() #绘制图例,即标明图中的线段代表何种含义
 
plt.figure() #创建一个新的图表
plt.plot(epochs,loss,'bo',label='Trainning loss')
plt.plot(epochs,val_loss,'b',label='Vaildation loss')
plt.legend() ##绘制图例,即标明图中的线段代表何种含义

以上这篇使用Keras画神经网络准确性图教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

python打印直角三角形与等腰三角形实例代码

这篇文章主要给大家介绍了关于python打印直角三角形与等腰三角形的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者使用python具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
收藏 0 赞 0 分享

基于python解线性矩阵方程(numpy中的matrix类)

这篇文章主要介绍了基于python解线性矩阵方程(numpy中的matrix类),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

vim自动补全插件YouCompleteMe(YCM)安装过程解析

这篇文章主要介绍了vim自动补全插件YouCompleteMe(YCM)安装过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python中@property和property函数常见使用方法示例

这篇文章主要介绍了python中@property和property函数常见使用方法,结合实例形式分析了Python @property和property函数功能、使用方法及相关操作注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

python中bytes和str类型的区别

这篇文章主要介绍了python中bytes和str类型的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

详解python中*号的用法

这篇文章主要介绍了python中*号的用法,文中通过代码给大家介绍了双星号(**)的用法,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python超时重新请求解决方案

这篇文章主要介绍了python超时重新请求解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python多继承(钻石继承)问题和解决方法简单示例

这篇文章主要介绍了python多继承(钻石继承)问题和解决方法,结合实例形式分析了Python多继承调用父类初始化方法相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

基于Python解密仿射密码

这篇文章主要介绍了基于Python解密仿射密码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

基于Python实现船舶的MMSI的获取(推荐)

工作中遇到一个需求,需要通过网站查询船舶名称得到MMSI码,网站来自船讯网。这篇文章主要介绍了基于Python实现船舶的MMSI的获取,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多