在Keras中利用np.random.shuffle()打乱数据集实例

所属分类: 脚本专栏 / python 阅读数: 1604
收藏 0 赞 0 分享

我就废话不多说了,大家还是直接看代码吧~

from numpy as np
index=np.arange(2000)
np.random.shuffle(index)
print(index[0:20])
 
X_train=X_train[index,:,:,:]#X_train是训练集,y_train是训练标签
y_train=y_train[index]

补充知识:Keras中shuffle和validation_split的顺序

模型的fit函数有两个参数,shuffle用于将数据打乱,validation_split用于在没有提供验证集的时候,按一定比例从训练集中取出一部分作为验证集

这里有个陷阱是,程序是先执行validation_split,再执行shuffle的,

所以会出现这种情况:

假如你的训练集是有序的,比方说正样本在前负样本在后,又设置了validation_split,那么你的验证集中很可能将全部是负样本

同样的,这个东西不会有任何错误报出来,因为Keras不可能知道你的数据有没有经过shuffle,保险起见如果你的数据是没shuffle过的,最好手动shuffle一下

np.random.seed(1024) random.shuffle(index) data = data[index] label = label[index] splitpoint = int(round(num * 0.8)) (X_train, X_val) = (data[0:splitpoint], data[splitpoint:]) (Y_train, Y_val) = (label[0:splitpoint], label[splitpoint:]) X_train=X_train/255 X_val=X_val/255

以上这篇在Keras中利用np.random.shuffle()打乱数据集实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python matplotlib模块及柱状图用法解析

这篇文章主要介绍了Python matplotlib模块及柱状图用法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

Python getattr()函数使用方法代码实例

这篇文章主要介绍了Python getattr()函数使用方法代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

Python 发送邮件方法总结

这篇文章主要介绍了Python 发送邮件的几种方法,帮助大家更好的理解和学习Python,感兴趣的朋友可以了解下
收藏 0 赞 0 分享

拿来就用!Python批量合并PDF的示例代码

这篇文章主要介绍了Python批量合并PDF的示例代码,帮助大家更好的理解和学习Python,感兴趣的朋友可以了解下
收藏 0 赞 0 分享

Python如何爬取b站热门视频并导入Excel

这篇文章主要介绍了Python如何爬取b站热门视频并导入Excel,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

Python进行统计建模

这篇文章主要介绍了Python进行统计建模的方法,帮助大家更好的理解和学习Python,感兴趣的朋友可以了解下
收藏 0 赞 0 分享

Python多线程的退出控制实现

这篇文章主要介绍了Python多线程的退出控制实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
收藏 0 赞 0 分享

如何在python中实现线性回归

这篇文章主要介绍了如何在python中实现线性回归,帮助大家更好的理解和学习Python,感兴趣的朋友可以了解下
收藏 0 赞 0 分享

python多线程semaphore实现线程数控制的示例

这篇文章主要介绍了python多线程semaphore实现线程数控制的示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
收藏 0 赞 0 分享

推荐值得学习的12款python-web开发框架

这篇文章主要介绍了值得学习的12款python-web开发框架,帮助大家更好的理解和学习Python web开发,感兴趣的朋友可以了解下
收藏 0 赞 0 分享
查看更多