keras绘制acc和loss曲线图实例

所属分类: 脚本专栏 / python 阅读数: 1537
收藏 0 赞 0 分享

我就废话不多说了,大家还是直接看代码吧!

#加载keras模块
from __future__ import print_function
import numpy as np
np.random.seed(1337) # for reproducibility

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import SGD, Adam, RMSprop
from keras.utils import np_utils
import matplotlib.pyplot as plt
%matplotlib inline

#写一个LossHistory类,保存loss和acc
class LossHistory(keras.callbacks.Callback):
 def on_train_begin(self, logs={}):
  self.losses = {'batch':[], 'epoch':[]}
  self.accuracy = {'batch':[], 'epoch':[]}
  self.val_loss = {'batch':[], 'epoch':[]}
  self.val_acc = {'batch':[], 'epoch':[]}

 def on_batch_end(self, batch, logs={}):
  self.losses['batch'].append(logs.get('loss'))
  self.accuracy['batch'].append(logs.get('acc'))
  self.val_loss['batch'].append(logs.get('val_loss'))
  self.val_acc['batch'].append(logs.get('val_acc'))

 def on_epoch_end(self, batch, logs={}):
  self.losses['epoch'].append(logs.get('loss'))
  self.accuracy['epoch'].append(logs.get('acc'))
  self.val_loss['epoch'].append(logs.get('val_loss'))
  self.val_acc['epoch'].append(logs.get('val_acc'))

 def loss_plot(self, loss_type):
  iters = range(len(self.losses[loss_type]))
  plt.figure()
  # acc
  plt.plot(iters, self.accuracy[loss_type], 'r', label='train acc')
  # loss
  plt.plot(iters, self.losses[loss_type], 'g', label='train loss')
  if loss_type == 'epoch':
   # val_acc
   plt.plot(iters, self.val_acc[loss_type], 'b', label='val acc')
   # val_loss
   plt.plot(iters, self.val_loss[loss_type], 'k', label='val loss')
  plt.grid(True)
  plt.xlabel(loss_type)
  plt.ylabel('acc-loss')
  plt.legend(loc="upper right")
  plt.show()
#变量初始化
batch_size = 128 
nb_classes = 10
nb_epoch = 20

# the data, shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train = X_train.reshape(60000, 784)
X_test = X_test.reshape(10000, 784)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)

#建立模型 使用Sequential()
model = Sequential()
model.add(Dense(512, input_shape=(784,)))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation('softmax'))

#打印模型
model.summary()

#训练与评估
#编译模型
model.compile(loss='categorical_crossentropy',
    optimizer=RMSprop(),
    metrics=['accuracy'])
#创建一个实例history
history = LossHistory()

#迭代训练(注意这个地方要加入callbacks)
model.fit(X_train, Y_train,
   batch_size=batch_size, nb_epoch=nb_epoch,
   verbose=1, 
   validation_data=(X_test, Y_test),
   callbacks=[history])

#模型评估
score = model.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])

#绘制acc-loss曲线
history.loss_plot('epoch')

补充知识:keras中自定义验证集的性能评估(ROC,AUC)

在keras中自带的性能评估有准确性以及loss,当需要以auc作为评价验证集的好坏时,就得自己写个评价函数了:

from sklearn.metrics import roc_auc_score
from keras import backend as K

# AUC for a binary classifier
def auc(y_true, y_pred):
 ptas = tf.stack([binary_PTA(y_true,y_pred,k) for k in np.linspace(0, 1, 1000)],axis=0)
 pfas = tf.stack([binary_PFA(y_true,y_pred,k) for k in np.linspace(0, 1, 1000)],axis=0)
 pfas = tf.concat([tf.ones((1,)) ,pfas],axis=0)
 binSizes = -(pfas[1:]-pfas[:-1])
 s = ptas*binSizes
 return K.sum(s, axis=0)
#------------------------------------------------------------------------------------
# PFA, prob false alert for binary classifier
def binary_PFA(y_true, y_pred, threshold=K.variable(value=0.5)):
 y_pred = K.cast(y_pred >= threshold, 'float32')
 # N = total number of negative labels
 N = K.sum(1 - y_true)
 # FP = total number of false alerts, alerts from the negative class labels
 FP = K.sum(y_pred - y_pred * y_true)
 return FP/N
#-----------------------------------------------------------------------------------
# P_TA prob true alerts for binary classifier
def binary_PTA(y_true, y_pred, threshold=K.variable(value=0.5)):
 y_pred = K.cast(y_pred >= threshold, 'float32')
 # P = total number of positive labels
 P = K.sum(y_true)
 # TP = total number of correct alerts, alerts from the positive class labels
 TP = K.sum(y_pred * y_true)
 return TP/P
 
#接着在模型的compile中设置metrics
#如下例子,我用的是RNN做分类
from keras.models import Sequential
from keras.layers import Dense, Dropout
import keras
from keras.layers import GRU

model = Sequential()
model.add(keras.layers.core.Masking(mask_value=0., input_shape=(max_lenth, max_features))) #masking用于变长序列输入
model.add(GRU(units=n_hidden_units,activation='selu',kernel_initializer='orthogonal', recurrent_initializer='orthogonal',
    bias_initializer='zeros', kernel_regularizer=regularizers.l2(0.01), recurrent_regularizer=regularizers.l2(0.01),
    bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None,
    bias_constraint=None, dropout=0.5, recurrent_dropout=0.0, implementation=1, return_sequences=False,
    return_state=False, go_backwards=False, stateful=False, unroll=False)) 
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',
    optimizer='adam',
    metrics=[auc]) #写入自定义评价函数

接下来就自己作预测了...

方法二:

from sklearn.metrics import roc_auc_score
import keras
class RocAucMetricCallback(keras.callbacks.Callback):
 def __init__(self, predict_batch_size=1024, include_on_batch=False):
  super(RocAucMetricCallback, self).__init__()
  self.predict_batch_size=predict_batch_size
  self.include_on_batch=include_on_batch
 
 def on_batch_begin(self, batch, logs={}):
  pass
 
 def on_batch_end(self, batch, logs={}):
  if(self.include_on_batch):
   logs['roc_auc_val']=float('-inf')
   if(self.validation_data):
    logs['roc_auc_val']=roc_auc_score(self.validation_data[1], 
             self.model.predict(self.validation_data[0],
                  batch_size=self.predict_batch_size))
 def on_train_begin(self, logs={}):
  if not ('roc_auc_val' in self.params['metrics']):
   self.params['metrics'].append('roc_auc_val')
 
 def on_train_end(self, logs={}):
  pass
 
 def on_epoch_begin(self, epoch, logs={}):
  pass
 
 def on_epoch_end(self, epoch, logs={}):
  logs['roc_auc_val']=float('-inf')
  if(self.validation_data):
   logs['roc_auc_val']=roc_auc_score(self.validation_data[1], 
            self.model.predict(self.validation_data[0],
                 batch_size=self.predict_batch_size))
import numpy as np
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import GRU
import keras
from keras.callbacks import EarlyStopping
from sklearn.metrics import roc_auc_score
from keras import metrics
 
cb = [
 my_callbacks.RocAucMetricCallback(), # include it before EarlyStopping!
 EarlyStopping(monitor='roc_auc_val',patience=300, verbose=2,mode='max')
]
model = Sequential()
model.add(keras.layers.core.Masking(mask_value=0., input_shape=(max_lenth, max_features)))
# model.add(Embedding(input_dim=max_features+1, output_dim=64,mask_zero=True))
model.add(GRU(units=n_hidden_units,activation='selu',kernel_initializer='orthogonal', recurrent_initializer='orthogonal',
    bias_initializer='zeros', kernel_regularizer=regularizers.l2(0.01), recurrent_regularizer=regularizers.l2(0.01),
    bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None,
    bias_constraint=None, dropout=0.5, recurrent_dropout=0.0, implementation=1, return_sequences=False,
    return_state=False, go_backwards=False, stateful=False, unroll=False)) #input_shape=(max_lenth, max_features),
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
 
model.compile(loss='binary_crossentropy',
    optimizer='adam',
    metrics=[auc]) #这里就可以写其他评估标准
model.fit(x_train, y_train, batch_size=train_batch_size, epochs=training_iters, verbose=2,
   callbacks=cb,validation_split=0.2,
   shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0)

亲测有效!

以上这篇keras绘制acc和loss曲线图实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

python打印直角三角形与等腰三角形实例代码

这篇文章主要给大家介绍了关于python打印直角三角形与等腰三角形的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者使用python具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
收藏 0 赞 0 分享

基于python解线性矩阵方程(numpy中的matrix类)

这篇文章主要介绍了基于python解线性矩阵方程(numpy中的matrix类),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

vim自动补全插件YouCompleteMe(YCM)安装过程解析

这篇文章主要介绍了vim自动补全插件YouCompleteMe(YCM)安装过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python中@property和property函数常见使用方法示例

这篇文章主要介绍了python中@property和property函数常见使用方法,结合实例形式分析了Python @property和property函数功能、使用方法及相关操作注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

python中bytes和str类型的区别

这篇文章主要介绍了python中bytes和str类型的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

详解python中*号的用法

这篇文章主要介绍了python中*号的用法,文中通过代码给大家介绍了双星号(**)的用法,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python超时重新请求解决方案

这篇文章主要介绍了python超时重新请求解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python多继承(钻石继承)问题和解决方法简单示例

这篇文章主要介绍了python多继承(钻石继承)问题和解决方法,结合实例形式分析了Python多继承调用父类初始化方法相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

基于Python解密仿射密码

这篇文章主要介绍了基于Python解密仿射密码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

基于Python实现船舶的MMSI的获取(推荐)

工作中遇到一个需求,需要通过网站查询船舶名称得到MMSI码,网站来自船讯网。这篇文章主要介绍了基于Python实现船舶的MMSI的获取,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多