numpy的Fancy Indexing和array比较详解

所属分类: 脚本专栏 / python 阅读数: 1117
收藏 0 赞 0 分享

一:Fancy Indexing

import numpy as np
 
#Fancy Indexing
x = np.arange(16)
np.random.shuffle(x)
print(x) #打印所有的元素
 
 
print(x[2])#获取某个元素的值
print(x[1:3])#切片
print(x[3:9:2])#指定间距切片
 
index = [2,4,7,9] #索引数组
print(x[index])#获取索引数组中的元素的值
 
ind = np.array([[0,2],[1,4]]) #索引二维数组
print(x[ind])##获取索引二维数组中的元素的值
 
print("---------------------")
 
X = x.reshape(4,-1)
print(X)
 
ind1 = np.array([1,3]) #行的索引
ind2 = np.array([2,0]) #列的索引
print(X[ind1,ind2])
 
print(X[:-2,ind2])
 
bool_index = [True,False,True,False] #True就取当前列,False就不取
print(X[:-1,bool_index])

Fancy Indexing 应用在一维数组 

x = np.arange(16) 
x[3] # 3
x[3:9] # array([3, 4, 5, 6, 7, 8])
x[3:9:2] # array([3, 5, 7])
[x[3], x[5], x[7]] # [3, 5, 7]
ind = [3, 5, 7] 
x[ind]  # array([3, 5, 7])
ind = np.array([[0, 2], [1, 3]]) 
x[ind] 
"""
array([[0, 2],
    [1, 3]])
"""

Fancy Indexing 应用在二维数组 

X = x.reshape(4, -1) 
"""
array([[ 0, 1, 2, 3],
    [ 4, 5, 6, 7],
    [ 8, 9, 10, 11],
    [12, 13, 14, 15]])
"""
row = np.array([0, 1, 2]) 
col = np.array([1, 2, 3])
# 1行2列,2行3列,3行4列
X[row, col]  # array([ 1, 6, 11])
# 前2行 2,3,4列
X[:2, col] 
"""
array([[1, 2, 3],
    [5, 6, 7]])
"""
col = [True, False, True, True] 
X[0, col]  # array([0, 2, 3])

二:array比较

import numpy as np
 
x = np.arange(16)
print(x)
 
print(x < 3) #返回的是bool数组
 
print(x == 3)
 
print(x != 3)
 
print(x * 4 == 24 - 4 * x)
 
 
 
print(x + 1)
 
print(x * 2)
 
print(x / 4)
 
print(x - 10)
 
print(np.sum(x<3))#返回小于3的元素个数
 
print(np.any(x==0)) #只要向量x中有等于0的就返回true
 
print(np.all(x==0)) #只有向量x中全部等于0才返回true
 
print(x[x<5]) #因为x<5返回的是bool数组,我们取true的元素的值
 
 
#二维的同样支持
print("----------------------")
X = x.reshape(4,-1)
 
print(X)
print(X<3)
print(x == 3)
print(np.sum(X<4))
print(np.count_nonzero(X<5)) #返回X中小于5的不等于0的个数
print(np.any(X==0)) #只要向量x中有等于0的就返回true
 
print(np.all(X==0)) #只有向量x中全部等于0才返回true
 
print(np.sum(X<4,axis=1))#沿着列的方向,计算每行小于4的个数
 
print(np.sum((X>3)&(X<10))) #计算X中大于3并且小于10的个数
 
print(np.sum(~(X==0))) #计算X中不等于0的个数
 
print(X[X[:,3]%3==0,:]) #因为X[:,3]%3==0返回的是一个向量,元素为true,false,false,true,所以最后取第一行和最后一行

到此这篇关于numpy的Fancy Indexing和array比较详解的文章就介绍到这了,更多相关numpy Fancy Indexing和array比较内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

更多精彩内容其他人还在看

python2.7无法使用pip的解决方法(安装easy_install)

下面小编就为大家分享一篇python2.7无法使用pip的解决方法(安装easy_install),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python实现的计算马氏距离算法示例

这篇文章主要介绍了Python实现的计算马氏距离算法,简单说明了马氏距离算法原理,并结合实例形式分析了Python实现与使用马氏距离算法的相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

python逐行读写txt文件的实例讲解

下面小编就为大家分享一篇python逐行读写txt文件的实例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python批量读取txt文件为DataFrame的方法

下面小编就为大家分享一篇python批量读取txt文件为DataFrame的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python通过调用mysql存储过程实现更新数据功能示例

这篇文章主要介绍了Python通过调用mysql存储过程实现更新数据功能,结合实例形式分析了Python调用mysql存储过程实现更新数据的具体步骤与相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现的HMacMD5加密算法示例

这篇文章主要介绍了Python实现的HMacMD5加密算法,简单说明了HMAC-MD5加密算法的概念、原理并结合实例形式分析了Python实现HMAC-MD5加密算法的相关操作技巧,,末尾还附带了Java实现HMAC-MD5加密算法的示例,需要的朋友可以参考下
收藏 0 赞 0 分享

图解Python变量与赋值

Python是一门独特的语言,与C语言有很大区别,初学Python很多萌新表示对变量与赋值不理解,这里就大家介绍一下,需要的朋友可以参考下
收藏 0 赞 0 分享

Python中的并发处理之asyncio包使用的详解

本篇文章主要介绍了Python中的并发处理之asyncio包使用的详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python获取二维矩阵每列最大值的方法

下面小编就为大家分享一篇Python获取二维矩阵每列最大值的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy找出array中的最大值,最小值实例

下面小编就为大家分享一篇numpy找出array中的最大值,最小值实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享
查看更多