keras实现调用自己训练的模型,并去掉全连接层

所属分类: 脚本专栏 / python 阅读数: 526
收藏 0 赞 0 分享

其实很简单

from keras.models import load_model

base_model = load_model('model_resenet.h5')#加载指定的模型
print(base_model.summary())#输出网络的结构图

这是我的网络模型的输出,其实就是它的结构图

__________________________________________________________________________________________________
Layer (type)          Output Shape     Param #   Connected to           
==================================================================================================
input_1 (InputLayer)      (None, 227, 227, 1) 0                      
__________________________________________________________________________________________________
conv2d_1 (Conv2D)        (None, 225, 225, 32) 320     input_1[0][0]          
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 225, 225, 32) 128     conv2d_1[0][0]          
__________________________________________________________________________________________________
activation_1 (Activation)    (None, 225, 225, 32) 0      batch_normalization_1[0][0]   
__________________________________________________________________________________________________
conv2d_2 (Conv2D)        (None, 225, 225, 32) 9248    activation_1[0][0]        
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 225, 225, 32) 128     conv2d_2[0][0]          
__________________________________________________________________________________________________
activation_2 (Activation)    (None, 225, 225, 32) 0      batch_normalization_2[0][0]   
__________________________________________________________________________________________________
conv2d_3 (Conv2D)        (None, 225, 225, 32) 9248    activation_2[0][0]        
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 225, 225, 32) 128     conv2d_3[0][0]          
__________________________________________________________________________________________________
merge_1 (Merge)         (None, 225, 225, 32) 0      batch_normalization_3[0][0]   
                                 activation_1[0][0]        
__________________________________________________________________________________________________
activation_3 (Activation)    (None, 225, 225, 32) 0      merge_1[0][0]          
__________________________________________________________________________________________________
conv2d_4 (Conv2D)        (None, 225, 225, 32) 9248    activation_3[0][0]        
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 225, 225, 32) 128     conv2d_4[0][0]          
__________________________________________________________________________________________________
activation_4 (Activation)    (None, 225, 225, 32) 0      batch_normalization_4[0][0]   
__________________________________________________________________________________________________
conv2d_5 (Conv2D)        (None, 225, 225, 32) 9248    activation_4[0][0]        
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 225, 225, 32) 128     conv2d_5[0][0]          
__________________________________________________________________________________________________
merge_2 (Merge)         (None, 225, 225, 32) 0      batch_normalization_5[0][0]   
                                 activation_3[0][0]        
__________________________________________________________________________________________________
activation_5 (Activation)    (None, 225, 225, 32) 0      merge_2[0][0]          
__________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D) (None, 112, 112, 32) 0      activation_5[0][0]        
__________________________________________________________________________________________________
conv2d_6 (Conv2D)        (None, 110, 110, 64) 18496    max_pooling2d_1[0][0]      
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 110, 110, 64) 256     conv2d_6[0][0]          
__________________________________________________________________________________________________
activation_6 (Activation)    (None, 110, 110, 64) 0      batch_normalization_6[0][0]   
__________________________________________________________________________________________________
conv2d_7 (Conv2D)        (None, 110, 110, 64) 36928    activation_6[0][0]        
__________________________________________________________________________________________________
batch_normalization_7 (BatchNor (None, 110, 110, 64) 256     conv2d_7[0][0]          
__________________________________________________________________________________________________
activation_7 (Activation)    (None, 110, 110, 64) 0      batch_normalization_7[0][0]   
__________________________________________________________________________________________________
conv2d_8 (Conv2D)        (None, 110, 110, 64) 36928    activation_7[0][0]        
__________________________________________________________________________________________________
batch_normalization_8 (BatchNor (None, 110, 110, 64) 256     conv2d_8[0][0]          
__________________________________________________________________________________________________
merge_3 (Merge)         (None, 110, 110, 64) 0      batch_normalization_8[0][0]   
                                 activation_6[0][0]        
__________________________________________________________________________________________________
activation_8 (Activation)    (None, 110, 110, 64) 0      merge_3[0][0]          
__________________________________________________________________________________________________
conv2d_9 (Conv2D)        (None, 110, 110, 64) 36928    activation_8[0][0]        
__________________________________________________________________________________________________
batch_normalization_9 (BatchNor (None, 110, 110, 64) 256     conv2d_9[0][0]          
__________________________________________________________________________________________________
activation_9 (Activation)    (None, 110, 110, 64) 0      batch_normalization_9[0][0]   
__________________________________________________________________________________________________
conv2d_10 (Conv2D)       (None, 110, 110, 64) 36928    activation_9[0][0]        
__________________________________________________________________________________________________
batch_normalization_10 (BatchNo (None, 110, 110, 64) 256     conv2d_10[0][0]         
__________________________________________________________________________________________________
merge_4 (Merge)         (None, 110, 110, 64) 0      batch_normalization_10[0][0]   
                                 activation_8[0][0]        
__________________________________________________________________________________________________
activation_10 (Activation)   (None, 110, 110, 64) 0      merge_4[0][0]          
__________________________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D) (None, 55, 55, 64)  0      activation_10[0][0]       
__________________________________________________________________________________________________
conv2d_11 (Conv2D)       (None, 53, 53, 64)  36928    max_pooling2d_2[0][0]      
__________________________________________________________________________________________________
batch_normalization_11 (BatchNo (None, 53, 53, 64)  256     conv2d_11[0][0]         
__________________________________________________________________________________________________
activation_11 (Activation)   (None, 53, 53, 64)  0      batch_normalization_11[0][0]   
__________________________________________________________________________________________________
max_pooling2d_3 (MaxPooling2D) (None, 26, 26, 64)  0      activation_11[0][0]       
__________________________________________________________________________________________________
conv2d_12 (Conv2D)       (None, 26, 26, 64)  36928    max_pooling2d_3[0][0]      
__________________________________________________________________________________________________
batch_normalization_12 (BatchNo (None, 26, 26, 64)  256     conv2d_12[0][0]         
__________________________________________________________________________________________________
activation_12 (Activation)   (None, 26, 26, 64)  0      batch_normalization_12[0][0]   
__________________________________________________________________________________________________
conv2d_13 (Conv2D)       (None, 26, 26, 64)  36928    activation_12[0][0]       
__________________________________________________________________________________________________
batch_normalization_13 (BatchNo (None, 26, 26, 64)  256     conv2d_13[0][0]         
__________________________________________________________________________________________________
merge_5 (Merge)         (None, 26, 26, 64)  0      batch_normalization_13[0][0]   
                                 max_pooling2d_3[0][0]      
__________________________________________________________________________________________________
activation_13 (Activation)   (None, 26, 26, 64)  0      merge_5[0][0]          
__________________________________________________________________________________________________
conv2d_14 (Conv2D)       (None, 26, 26, 64)  36928    activation_13[0][0]       
__________________________________________________________________________________________________
batch_normalization_14 (BatchNo (None, 26, 26, 64)  256     conv2d_14[0][0]         
__________________________________________________________________________________________________
activation_14 (Activation)   (None, 26, 26, 64)  0      batch_normalization_14[0][0]   
__________________________________________________________________________________________________
conv2d_15 (Conv2D)       (None, 26, 26, 64)  36928    activation_14[0][0]       
__________________________________________________________________________________________________
batch_normalization_15 (BatchNo (None, 26, 26, 64)  256     conv2d_15[0][0]         
__________________________________________________________________________________________________
merge_6 (Merge)         (None, 26, 26, 64)  0      batch_normalization_15[0][0]   
                                 activation_13[0][0]       
__________________________________________________________________________________________________
activation_15 (Activation)   (None, 26, 26, 64)  0      merge_6[0][0]          
__________________________________________________________________________________________________
max_pooling2d_4 (MaxPooling2D) (None, 13, 13, 64)  0      activation_15[0][0]       
__________________________________________________________________________________________________
conv2d_16 (Conv2D)       (None, 11, 11, 32)  18464    max_pooling2d_4[0][0]      
__________________________________________________________________________________________________
batch_normalization_16 (BatchNo (None, 11, 11, 32)  128     conv2d_16[0][0]         
__________________________________________________________________________________________________
activation_16 (Activation)   (None, 11, 11, 32)  0      batch_normalization_16[0][0]   
__________________________________________________________________________________________________
conv2d_17 (Conv2D)       (None, 11, 11, 32)  9248    activation_16[0][0]       
__________________________________________________________________________________________________
batch_normalization_17 (BatchNo (None, 11, 11, 32)  128     conv2d_17[0][0]         
__________________________________________________________________________________________________
activation_17 (Activation)   (None, 11, 11, 32)  0      batch_normalization_17[0][0]   
__________________________________________________________________________________________________
conv2d_18 (Conv2D)       (None, 11, 11, 32)  9248    activation_17[0][0]       
__________________________________________________________________________________________________
batch_normalization_18 (BatchNo (None, 11, 11, 32)  128     conv2d_18[0][0]         
__________________________________________________________________________________________________
merge_7 (Merge)         (None, 11, 11, 32)  0      batch_normalization_18[0][0]   
                                 activation_16[0][0]       
__________________________________________________________________________________________________
activation_18 (Activation)   (None, 11, 11, 32)  0      merge_7[0][0]          
__________________________________________________________________________________________________
conv2d_19 (Conv2D)       (None, 11, 11, 32)  9248    activation_18[0][0]       
__________________________________________________________________________________________________
batch_normalization_19 (BatchNo (None, 11, 11, 32)  128     conv2d_19[0][0]         
__________________________________________________________________________________________________
activation_19 (Activation)   (None, 11, 11, 32)  0      batch_normalization_19[0][0]   
__________________________________________________________________________________________________
conv2d_20 (Conv2D)       (None, 11, 11, 32)  9248    activation_19[0][0]       
__________________________________________________________________________________________________
batch_normalization_20 (BatchNo (None, 11, 11, 32)  128     conv2d_20[0][0]         
__________________________________________________________________________________________________
merge_8 (Merge)         (None, 11, 11, 32)  0      batch_normalization_20[0][0]   
                                 activation_18[0][0]       
__________________________________________________________________________________________________
activation_20 (Activation)   (None, 11, 11, 32)  0      merge_8[0][0]          
__________________________________________________________________________________________________
max_pooling2d_5 (MaxPooling2D) (None, 5, 5, 32)   0      activation_20[0][0]       
__________________________________________________________________________________________________
conv2d_21 (Conv2D)       (None, 3, 3, 64)   18496    max_pooling2d_5[0][0]      
__________________________________________________________________________________________________
batch_normalization_21 (BatchNo (None, 3, 3, 64)   256     conv2d_21[0][0]         
__________________________________________________________________________________________________
activation_21 (Activation)   (None, 3, 3, 64)   0      batch_normalization_21[0][0]   
__________________________________________________________________________________________________
conv2d_22 (Conv2D)       (None, 3, 3, 64)   36928    activation_21[0][0]       
__________________________________________________________________________________________________
batch_normalization_22 (BatchNo (None, 3, 3, 64)   256     conv2d_22[0][0]         
__________________________________________________________________________________________________
activation_22 (Activation)   (None, 3, 3, 64)   0      batch_normalization_22[0][0]   
__________________________________________________________________________________________________
conv2d_23 (Conv2D)       (None, 3, 3, 64)   36928    activation_22[0][0]       
__________________________________________________________________________________________________
batch_normalization_23 (BatchNo (None, 3, 3, 64)   256     conv2d_23[0][0]         
__________________________________________________________________________________________________
merge_9 (Merge)         (None, 3, 3, 64)   0      batch_normalization_23[0][0]   
                                 activation_21[0][0]       
__________________________________________________________________________________________________
activation_23 (Activation)   (None, 3, 3, 64)   0      merge_9[0][0]          
__________________________________________________________________________________________________
conv2d_24 (Conv2D)       (None, 3, 3, 64)   36928    activation_23[0][0]       
__________________________________________________________________________________________________
batch_normalization_24 (BatchNo (None, 3, 3, 64)   256     conv2d_24[0][0]         
__________________________________________________________________________________________________
activation_24 (Activation)   (None, 3, 3, 64)   0      batch_normalization_24[0][0]   
__________________________________________________________________________________________________
conv2d_25 (Conv2D)       (None, 3, 3, 64)   36928    activation_24[0][0]       
__________________________________________________________________________________________________
batch_normalization_25 (BatchNo (None, 3, 3, 64)   256     conv2d_25[0][0]         
__________________________________________________________________________________________________
merge_10 (Merge)        (None, 3, 3, 64)   0      batch_normalization_25[0][0]   
                                 activation_23[0][0]       
__________________________________________________________________________________________________
activation_25 (Activation)   (None, 3, 3, 64)   0      merge_10[0][0]          
__________________________________________________________________________________________________
max_pooling2d_6 (MaxPooling2D) (None, 1, 1, 64)   0      activation_25[0][0]       
__________________________________________________________________________________________________
flatten_1 (Flatten)       (None, 64)      0      max_pooling2d_6[0][0]      
__________________________________________________________________________________________________
dense_1 (Dense)         (None, 256)     16640    flatten_1[0][0]         
__________________________________________________________________________________________________
dropout_1 (Dropout)       (None, 256)     0      dense_1[0][0]          
__________________________________________________________________________________________________
dense_2 (Dense)         (None, 2)      514     dropout_1[0][0]         
==================================================================================================
Total params: 632,098
Trainable params: 629,538
Non-trainable params: 2,560
__________________________________________________________________________________________________

去掉模型的全连接层

from keras.models import load_model

base_model = load_model('model_resenet.h5')
resnet_model = Model(inputs=base_model.input, outputs=base_model.get_layer('max_pooling2d_6').output)
#'max_pooling2d_6'其实就是上述网络中全连接层的前面一层,当然这里你也可以选取其它层,把该层的名称代替'max_pooling2d_6'即可,这样其实就是截取网络,输出网络结构就是方便读取每层的名字。
print(resnet_model.summary())

新输出的网络结构:

__________________________________________________________________________________________________
Layer (type)          Output Shape     Param #   Connected to           
==================================================================================================
input_1 (InputLayer)      (None, 227, 227, 1) 0                      
__________________________________________________________________________________________________
conv2d_1 (Conv2D)        (None, 225, 225, 32) 320     input_1[0][0]          
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 225, 225, 32) 128     conv2d_1[0][0]          
__________________________________________________________________________________________________
activation_1 (Activation)    (None, 225, 225, 32) 0      batch_normalization_1[0][0]   
__________________________________________________________________________________________________
conv2d_2 (Conv2D)        (None, 225, 225, 32) 9248    activation_1[0][0]        
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 225, 225, 32) 128     conv2d_2[0][0]          
__________________________________________________________________________________________________
activation_2 (Activation)    (None, 225, 225, 32) 0      batch_normalization_2[0][0]   
__________________________________________________________________________________________________
conv2d_3 (Conv2D)        (None, 225, 225, 32) 9248    activation_2[0][0]        
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 225, 225, 32) 128     conv2d_3[0][0]          
__________________________________________________________________________________________________
merge_1 (Merge)         (None, 225, 225, 32) 0      batch_normalization_3[0][0]   
                                 activation_1[0][0]        
__________________________________________________________________________________________________
activation_3 (Activation)    (None, 225, 225, 32) 0      merge_1[0][0]          
__________________________________________________________________________________________________
conv2d_4 (Conv2D)        (None, 225, 225, 32) 9248    activation_3[0][0]        
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 225, 225, 32) 128     conv2d_4[0][0]          
__________________________________________________________________________________________________
activation_4 (Activation)    (None, 225, 225, 32) 0      batch_normalization_4[0][0]   
__________________________________________________________________________________________________
conv2d_5 (Conv2D)        (None, 225, 225, 32) 9248    activation_4[0][0]        
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 225, 225, 32) 128     conv2d_5[0][0]          
__________________________________________________________________________________________________
merge_2 (Merge)         (None, 225, 225, 32) 0      batch_normalization_5[0][0]   
                                 activation_3[0][0]        
__________________________________________________________________________________________________
activation_5 (Activation)    (None, 225, 225, 32) 0      merge_2[0][0]          
__________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D) (None, 112, 112, 32) 0      activation_5[0][0]        
__________________________________________________________________________________________________
conv2d_6 (Conv2D)        (None, 110, 110, 64) 18496    max_pooling2d_1[0][0]      
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 110, 110, 64) 256     conv2d_6[0][0]          
__________________________________________________________________________________________________
activation_6 (Activation)    (None, 110, 110, 64) 0      batch_normalization_6[0][0]   
__________________________________________________________________________________________________
conv2d_7 (Conv2D)        (None, 110, 110, 64) 36928    activation_6[0][0]        
__________________________________________________________________________________________________
batch_normalization_7 (BatchNor (None, 110, 110, 64) 256     conv2d_7[0][0]          
__________________________________________________________________________________________________
activation_7 (Activation)    (None, 110, 110, 64) 0      batch_normalization_7[0][0]   
__________________________________________________________________________________________________
conv2d_8 (Conv2D)        (None, 110, 110, 64) 36928    activation_7[0][0]        
__________________________________________________________________________________________________
batch_normalization_8 (BatchNor (None, 110, 110, 64) 256     conv2d_8[0][0]          
__________________________________________________________________________________________________
merge_3 (Merge)         (None, 110, 110, 64) 0      batch_normalization_8[0][0]   
                                 activation_6[0][0]        
__________________________________________________________________________________________________
activation_8 (Activation)    (None, 110, 110, 64) 0      merge_3[0][0]          
__________________________________________________________________________________________________
conv2d_9 (Conv2D)        (None, 110, 110, 64) 36928    activation_8[0][0]        
__________________________________________________________________________________________________
batch_normalization_9 (BatchNor (None, 110, 110, 64) 256     conv2d_9[0][0]          
__________________________________________________________________________________________________
activation_9 (Activation)    (None, 110, 110, 64) 0      batch_normalization_9[0][0]   
__________________________________________________________________________________________________
conv2d_10 (Conv2D)       (None, 110, 110, 64) 36928    activation_9[0][0]        
__________________________________________________________________________________________________
batch_normalization_10 (BatchNo (None, 110, 110, 64) 256     conv2d_10[0][0]         
__________________________________________________________________________________________________
merge_4 (Merge)         (None, 110, 110, 64) 0      batch_normalization_10[0][0]   
                                 activation_8[0][0]        
__________________________________________________________________________________________________
activation_10 (Activation)   (None, 110, 110, 64) 0      merge_4[0][0]          
__________________________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D) (None, 55, 55, 64)  0      activation_10[0][0]       
__________________________________________________________________________________________________
conv2d_11 (Conv2D)       (None, 53, 53, 64)  36928    max_pooling2d_2[0][0]      
__________________________________________________________________________________________________
batch_normalization_11 (BatchNo (None, 53, 53, 64)  256     conv2d_11[0][0]         
__________________________________________________________________________________________________
activation_11 (Activation)   (None, 53, 53, 64)  0      batch_normalization_11[0][0]   
__________________________________________________________________________________________________
max_pooling2d_3 (MaxPooling2D) (None, 26, 26, 64)  0      activation_11[0][0]       
__________________________________________________________________________________________________
conv2d_12 (Conv2D)       (None, 26, 26, 64)  36928    max_pooling2d_3[0][0]      
__________________________________________________________________________________________________
batch_normalization_12 (BatchNo (None, 26, 26, 64)  256     conv2d_12[0][0]         
__________________________________________________________________________________________________
activation_12 (Activation)   (None, 26, 26, 64)  0      batch_normalization_12[0][0]   
__________________________________________________________________________________________________
conv2d_13 (Conv2D)       (None, 26, 26, 64)  36928    activation_12[0][0]       
__________________________________________________________________________________________________
batch_normalization_13 (BatchNo (None, 26, 26, 64)  256     conv2d_13[0][0]         
__________________________________________________________________________________________________
merge_5 (Merge)         (None, 26, 26, 64)  0      batch_normalization_13[0][0]   
                                 max_pooling2d_3[0][0]      
__________________________________________________________________________________________________
activation_13 (Activation)   (None, 26, 26, 64)  0      merge_5[0][0]          
__________________________________________________________________________________________________
conv2d_14 (Conv2D)       (None, 26, 26, 64)  36928    activation_13[0][0]       
__________________________________________________________________________________________________
batch_normalization_14 (BatchNo (None, 26, 26, 64)  256     conv2d_14[0][0]         
__________________________________________________________________________________________________
activation_14 (Activation)   (None, 26, 26, 64)  0      batch_normalization_14[0][0]   
__________________________________________________________________________________________________
conv2d_15 (Conv2D)       (None, 26, 26, 64)  36928    activation_14[0][0]       
__________________________________________________________________________________________________
batch_normalization_15 (BatchNo (None, 26, 26, 64)  256     conv2d_15[0][0]         
__________________________________________________________________________________________________
merge_6 (Merge)         (None, 26, 26, 64)  0      batch_normalization_15[0][0]   
                                 activation_13[0][0]       
__________________________________________________________________________________________________
activation_15 (Activation)   (None, 26, 26, 64)  0      merge_6[0][0]          
__________________________________________________________________________________________________
max_pooling2d_4 (MaxPooling2D) (None, 13, 13, 64)  0      activation_15[0][0]       
__________________________________________________________________________________________________
conv2d_16 (Conv2D)       (None, 11, 11, 32)  18464    max_pooling2d_4[0][0]      
__________________________________________________________________________________________________
batch_normalization_16 (BatchNo (None, 11, 11, 32)  128     conv2d_16[0][0]         
__________________________________________________________________________________________________
activation_16 (Activation)   (None, 11, 11, 32)  0      batch_normalization_16[0][0]   
__________________________________________________________________________________________________
conv2d_17 (Conv2D)       (None, 11, 11, 32)  9248    activation_16[0][0]       
__________________________________________________________________________________________________
batch_normalization_17 (BatchNo (None, 11, 11, 32)  128     conv2d_17[0][0]         
__________________________________________________________________________________________________
activation_17 (Activation)   (None, 11, 11, 32)  0      batch_normalization_17[0][0]   
__________________________________________________________________________________________________
conv2d_18 (Conv2D)       (None, 11, 11, 32)  9248    activation_17[0][0]       
__________________________________________________________________________________________________
batch_normalization_18 (BatchNo (None, 11, 11, 32)  128     conv2d_18[0][0]         
__________________________________________________________________________________________________
merge_7 (Merge)         (None, 11, 11, 32)  0      batch_normalization_18[0][0]   
                                 activation_16[0][0]       
__________________________________________________________________________________________________
activation_18 (Activation)   (None, 11, 11, 32)  0      merge_7[0][0]          
__________________________________________________________________________________________________
conv2d_19 (Conv2D)       (None, 11, 11, 32)  9248    activation_18[0][0]       
__________________________________________________________________________________________________
batch_normalization_19 (BatchNo (None, 11, 11, 32)  128     conv2d_19[0][0]         
__________________________________________________________________________________________________
activation_19 (Activation)   (None, 11, 11, 32)  0      batch_normalization_19[0][0]   
__________________________________________________________________________________________________
conv2d_20 (Conv2D)       (None, 11, 11, 32)  9248    activation_19[0][0]       
__________________________________________________________________________________________________
batch_normalization_20 (BatchNo (None, 11, 11, 32)  128     conv2d_20[0][0]         
__________________________________________________________________________________________________
merge_8 (Merge)         (None, 11, 11, 32)  0      batch_normalization_20[0][0]   
                                 activation_18[0][0]       
__________________________________________________________________________________________________
activation_20 (Activation)   (None, 11, 11, 32)  0      merge_8[0][0]          
__________________________________________________________________________________________________
max_pooling2d_5 (MaxPooling2D) (None, 5, 5, 32)   0      activation_20[0][0]       
__________________________________________________________________________________________________
conv2d_21 (Conv2D)       (None, 3, 3, 64)   18496    max_pooling2d_5[0][0]      
__________________________________________________________________________________________________
batch_normalization_21 (BatchNo (None, 3, 3, 64)   256     conv2d_21[0][0]         
__________________________________________________________________________________________________
activation_21 (Activation)   (None, 3, 3, 64)   0      batch_normalization_21[0][0]   
__________________________________________________________________________________________________
conv2d_22 (Conv2D)       (None, 3, 3, 64)   36928    activation_21[0][0]       
__________________________________________________________________________________________________
batch_normalization_22 (BatchNo (None, 3, 3, 64)   256     conv2d_22[0][0]         
__________________________________________________________________________________________________
activation_22 (Activation)   (None, 3, 3, 64)   0      batch_normalization_22[0][0]   
__________________________________________________________________________________________________
conv2d_23 (Conv2D)       (None, 3, 3, 64)   36928    activation_22[0][0]       
__________________________________________________________________________________________________
batch_normalization_23 (BatchNo (None, 3, 3, 64)   256     conv2d_23[0][0]         
__________________________________________________________________________________________________
merge_9 (Merge)         (None, 3, 3, 64)   0      batch_normalization_23[0][0]   
                                 activation_21[0][0]       
__________________________________________________________________________________________________
activation_23 (Activation)   (None, 3, 3, 64)   0      merge_9[0][0]          
__________________________________________________________________________________________________
conv2d_24 (Conv2D)       (None, 3, 3, 64)   36928    activation_23[0][0]       
__________________________________________________________________________________________________
batch_normalization_24 (BatchNo (None, 3, 3, 64)   256     conv2d_24[0][0]         
__________________________________________________________________________________________________
activation_24 (Activation)   (None, 3, 3, 64)   0      batch_normalization_24[0][0]   
__________________________________________________________________________________________________
conv2d_25 (Conv2D)       (None, 3, 3, 64)   36928    activation_24[0][0]       
__________________________________________________________________________________________________
batch_normalization_25 (BatchNo (None, 3, 3, 64)   256     conv2d_25[0][0]         
__________________________________________________________________________________________________
merge_10 (Merge)        (None, 3, 3, 64)   0      batch_normalization_25[0][0]   
                                 activation_23[0][0]       
__________________________________________________________________________________________________
activation_25 (Activation)   (None, 3, 3, 64)   0      merge_10[0][0]          
__________________________________________________________________________________________________
max_pooling2d_6 (MaxPooling2D) (None, 1, 1, 64)   0      activation_25[0][0]       
==================================================================================================
Total params: 614,944
Trainable params: 612,384
Non-trainable params: 2,560
__________________________________________________________________________________________________

以上这篇keras实现调用自己训练的模型,并去掉全连接层就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

python2.7无法使用pip的解决方法(安装easy_install)

下面小编就为大家分享一篇python2.7无法使用pip的解决方法(安装easy_install),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python实现的计算马氏距离算法示例

这篇文章主要介绍了Python实现的计算马氏距离算法,简单说明了马氏距离算法原理,并结合实例形式分析了Python实现与使用马氏距离算法的相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

python逐行读写txt文件的实例讲解

下面小编就为大家分享一篇python逐行读写txt文件的实例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python批量读取txt文件为DataFrame的方法

下面小编就为大家分享一篇python批量读取txt文件为DataFrame的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python通过调用mysql存储过程实现更新数据功能示例

这篇文章主要介绍了Python通过调用mysql存储过程实现更新数据功能,结合实例形式分析了Python调用mysql存储过程实现更新数据的具体步骤与相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现的HMacMD5加密算法示例

这篇文章主要介绍了Python实现的HMacMD5加密算法,简单说明了HMAC-MD5加密算法的概念、原理并结合实例形式分析了Python实现HMAC-MD5加密算法的相关操作技巧,,末尾还附带了Java实现HMAC-MD5加密算法的示例,需要的朋友可以参考下
收藏 0 赞 0 分享

图解Python变量与赋值

Python是一门独特的语言,与C语言有很大区别,初学Python很多萌新表示对变量与赋值不理解,这里就大家介绍一下,需要的朋友可以参考下
收藏 0 赞 0 分享

Python中的并发处理之asyncio包使用的详解

本篇文章主要介绍了Python中的并发处理之asyncio包使用的详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python获取二维矩阵每列最大值的方法

下面小编就为大家分享一篇Python获取二维矩阵每列最大值的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy找出array中的最大值,最小值实例

下面小编就为大家分享一篇numpy找出array中的最大值,最小值实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享
查看更多