使用Matplotlib绘制不同颜色的带箭头的线实例

所属分类: 脚本专栏 / python 阅读数: 725
收藏 0 赞 0 分享

周五的时候计算出来一条线路,但是计算出来的只是类似与

0->10->19->2->..0

这样的线路只有写代码的人才能看的懂无法直观的表达出来,让其它同事看的不清晰,所以考虑怎样直观的把线路图画出来。

&esp; 当然是考虑用matplotlib了,

导入相关的库

import matplotlib.pyplot as plt
import numpy
import matplotlib.colors as colors
import matplotlib.cm as cmx

后面两个主要是用于处理颜色的。

准备数据

 _locations = [
    (4, 4), # depot
    (4, 4), # unload depot_prime
    (4, 4), # unload depot_second
    (4, 4), # unload depot_fourth
    (4, 4), # unload depot_fourth
    (4, 4), # unload depot_fifth
    (2, 0),
    (8, 0), # locations to visit
    (0, 1),
    (1, 1),
    (5, 2),
    (7, 2),
    (3, 3),
    (6, 3),
    (5, 5),
    (8, 5),
    (1, 6),
    (2, 6),
    (3, 7),
    (6, 7),
    (0, 8),
    (7, 8)
  ]

画图

plt.figure(figsize=(10, 10))
p1 = [l[0] for l in _locations]
p2 = [l[1] for l in _locations]
plt.plot(p1[:6], p2[:6], 'g*', ms=20, label='depot')
plt.plot(p1[6:], p2[6:], 'ro', ms=15, label='customer')
plt.grid(True)
plt.legend(loc='lower left')

way = [[0, 12, 18, 17, 16, 4, 14, 10, 11, 13, 5], [0, 6, 9, 8, 20, 3], [0, 19, 21, 15, 7, 2]]  # 

cmap = plt.cm.jet
cNorm = colors.Normalize(vmin=0, vmax=len(way))
scalarMap = cmx.ScalarMappable(norm=cNorm,cmap=cmap)

for k in range(0, len(way)):
  way0 = way[k]
  colorVal = scalarMap.to_rgba(k)
  for i in range(0, len(way0)-1):
    start = _locations[way0[i]]
    end = _locations[way0[i+1]]
#     plt.arrow(start[0], start[1], end[0]-start[0], end[1]-start[1], length_includes_head=True,
#         head_width=0.2, head_length=0.3, fc='k', ec='k', lw=2, ls=lineStyle[k], color='red')
    plt.arrow(start[0], start[1], end[0]-start[0], end[1]-start[1], 
         length_includes_head=True, head_width=0.2, lw=2,
         color=colorVal)
plt.show()
cmap = plt.cm.jet
cNorm = colors.Normalize(vmin=0, vmax=len(way))
scalarMap = cmx.ScalarMappable(norm=cNorm,cmap=cmap)

cmap可以理解为颜色库,cNorm设置颜色的范围,有几条线路就设置几种颜色,scalarMap颜色生成完毕。最后在绘图的时候,根据索引获得相应的颜色就可以了。

结果如下:

补充知识:Python包matplotlib绘图--如何标注某点--附代码

# -*- coding: utf-8 -*-
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
plt.style.use('classic')

plt.rcParams['font.sans-serif'] = ['SimHei'] #解决中文显示
plt.rcParams['axes.unicode_minus'] = False #解决符号无法显示

x=np.array([1,2,3,4,5,6,7,8])
y1=np.array([3,5,35,300,800,600,1200,4000])
y2=np.array([8,14,94,703,1300,1660,2801,12768])

fig1 = plt.figure()

ax = plt.axes()
ax.plot(x, y2,label='时间/秒')
ax.set(xlabel='目标函数个数', ylabel='程序运行时间',title='多目标收敛速度')

plt.hlines(703, 0, 4, colors='r', linestyle="--")
plt.text(0, 703, "703")
plt.hlines(1300, 0, 5, colors='g', linestyle="--")
plt.text(0, 1300, "1300")

# annotate 
plt.annotate("703秒", (4,703), xycoords='data',
       xytext=(4.2, 2000), 
       arrowprops=dict(arrowstyle='->')) 
plt.annotate("94秒", (3,94), xycoords='data',
       xytext=(3.5, 2000), 
       arrowprops=dict(arrowstyle='->')) 
plt.annotate("14秒", (2,14), xycoords='data',
       xytext=(2.5, 2000), 
       arrowprops=dict(arrowstyle='->')) 
plt.annotate("8秒", (1,8), xycoords='data',
       xytext=(1.5, 2000), 
       arrowprops=dict(arrowstyle='->')) 
plt.legend()
plt.show()
fig1.savefig('my_figure1.png')

import numpy as np
from matplotlib import pyplot as plt
from matplotlib.path import Path
from matplotlib.patches import PathPatch

# Use seaborn to change the default graphics to something nicer
import seaborn as sns
# And set a nice color palette
sns.set_color_codes('deep')

# Create the plot object
fig, ax = plt.subplots(figsize=(5, 4))
x = np.linspace(0, 1000)

# Add finishing constraint: x2 <= 100/2 - x1/2
plt.plot(x, 50/4 - 3*x/4, linewidth=3, label='First constraint')
plt.fill_between(x, 0, 100/2 - x/2, alpha=0.1)

# Add carpentry constraint: x2 <= 80 - x1
plt.plot(x, 30 - 2*x, linewidth=3, label='Second constraint')
plt.fill_between(x, 0, 100 - 2*x, alpha=0.1)

# Add non-negativity constraints
plt.plot(np.zeros_like(x), x, linewidth=3, label='$x$ Sign restriction')
plt.plot(x, np.zeros_like(x), linewidth=3, label='$y$ Sign restriction')

#====================================================
# This part is different from giapetto_feasible.py
# Plot the possible (x1, x2) pairs
pairs = [(x, y) for x in np.arange(101)
        for y in np.arange(101)
        if (300*x + 400*y) <= 5000
        and (200*x + 100*y) <= 3000]

# Split these into our variables
chairs, tables = np.hsplit(np.array(pairs), 2)

# Caculate the objective function at each pair
z =8*chairs + 9*tables

# Plot the results
plt.scatter(chairs, tables, c=z, cmap='jet', edgecolor='gray', alpha=0.5, label='Profit at each point', zorder=3)

# Colorbar
cb = plt.colorbar()
cb.set_label('Profit Colormap ($)')
#====================================================

# Labels and stuff
plt.xlabel('Package A')
plt.ylabel('Package B')
plt.xlim(-0.5, 20)
plt.ylim(-0.5, 20)
plt.legend()
fig01 = plt.figure()
plt.show()

以上这篇使用Matplotlib绘制不同颜色的带箭头的线实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

python中seaborn包常用图形使用详解

今天小编就为大家分享一篇python中seaborn包常用图形使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy:找到指定元素的索引示例

今天小编就为大家分享一篇numpy:找到指定元素的索引示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python实现图片上添加图片

这篇文章主要为大家详细介绍了python实现图片上添加图片,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

从numpy数组中取出满足条件的元素示例

今天小编就为大家分享一篇从numpy数组中取出满足条件的元素示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python实现图片添加文字

这篇文章主要为大家详细介绍了Python实现图片添加文字,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

python实现在多维数组中挑选符合条件的全部元素

今天小编就为大家分享一篇python实现在多维数组中挑选符合条件的全部元素,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python如何使用BeautifulSoup爬取网页信息

这篇文章主要介绍了Python如何使用BeautifulSoup爬取网页信息,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

浅谈python已知元素,获取元素索引(numpy,pandas)

今天小编就为大家分享一篇浅谈python已知元素,获取元素索引(numpy,pandas),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy ndarray 按条件筛选数组,关联筛选的例子

今天小编就为大家分享一篇numpy ndarray 按条件筛选数组,关联筛选的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python pickle模块实现对象序列化

这篇文章主要介绍了Python pickle模块实现对象序列化,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多