pandas数据拼接的实现示例

所属分类: 脚本专栏 / python 阅读数: 871
收藏 0 赞 0 分享

一 前言

pandas数据拼接有可能会用到,比如出现重复数据,需要合并两份数据的交集,并集就是个不错的选择,知识追寻者本着技多不压身的态度蛮学习了一下下;

二 数据拼接

在进行学习数据转换之前,先学习一些数拼接相关的知识

2.1 join()联结

有关merge操作知识追寻者这边不提及,有空可能后面会专门出一篇相关文章,因为其学习方式根SQL的表联结类似,不是几行能说清楚的知识点;

join操作能将 2 个DataFrame 合并为一块,前提是DataFrame 之间的列没有重复;

# -*- coding: utf-8 -*-

import pandas as pd
import numpy as np

data1 = {
  'user' : ['zszxz','craler','rose'],
  'price' : [100, 200, 300],
  'hobby' : ['reading','running','hiking']
}
index1 = ['user1','user2','user3']
frame1 = pd.DataFrame(data1,index1)

data2 = {
  'person' : ['zszxz','craler','rose'],
  'number' : [100, 2000, 3000],
  'activity' : ['swing','riding','climbing']
}
index2 = ['user1','user2','user3']
frame2 = pd.DataFrame(data2,index2)

join = frame1.join(frame2)
print(join)

输出

         user  price    hobby  person  number  activity
user1   zszxz    100  reading   zszxz     100     swing
user2  craler    200  running  craler    2000    riding
user3    rose    300   hiking    rose    3000  climbing

2.2 concat()拼接

使用 concat() 函数能将2个 Series 拼接为一个,默认按行拼接;

ser1 = pd.Series(['111','222',np.NaN])
ser2 = pd.Series(['333','444',np.NaN])
# 默认按行拼接
print(pd.concat([ser1, ser2]))

如果按列拼接则 axis = 1

ser1 = pd.Series(['111','222',np.NaN])
ser2 = pd.Series(['333','444',np.NaN])
# 按列拼接
print(pd.concat([ser1, ser2],axis=1))

输出

     0    1
0  111  333
1  222  444
2  NaN  NaN

更近一步,指定key 参数 输出的数据格式就和 DataFrame 一样

ser1 = pd.Series(['111','222',np.NaN])
ser2 = pd.Series(['333','444',np.NaN])
# 按列拼接
data = pd.concat([ser1, ser2],axis=1, keys=['zszxz', 'rzxx'])
print(data)

输出

  zszxz rzxx
0   111  333
1   222  444
2   NaN  NaN

注 : DataFrame 的 concat 操作 和 Series 类似;

2.3 combine_first()组合

索引重复时就可以使用combine_first进行拼接

ser1 = pd.Series(['111','222',np.NaN],index=[1,2,3])
ser2 = pd.Series(['333','444',np.NaN,'555'],index=[1,2,3,4])
data = ser1.combine_first(ser2)
print(data)

输出

1    111
2    222
3    NaN
4    555
dtype: object

将Series 位置互换一下,可以看见基准将以 ser2为准;

ser1 = pd.Series(['111','222',np.NaN],index=[1,2,3])
ser2 = pd.Series(['333','444',np.NaN,'555'],index=[1,2,3,4])
data = ser2.combine_first(ser1)
print(data)

输出

1    333
2    444
3    NaN
4    555
dtype: object

2.4 轴转换

准备的数据

# -*- coding: utf-8 -*-

import pandas as pd
import numpy as np

data = {
  'user' : ['zszxz','craler','rose'],
  'price' : [100, 200, 300],
  'hobby' : ['reading','running','hiking']
}
index = ['user1','user2','user3']
frame = pd.DataFrame(data,index)
print(frame)

输出

         user  price    hobby
user1   zszxz    100  reading
user2  craler    200  running
user3    rose    300   hiking

stack() 将 列转为行;

# -*- coding: utf-8 -*-

import pandas as pd
import numpy as np

data = {
  'user' : ['zszxz','craler','rose'],
  'price' : [100, 200, 300],
  'hobby' : ['reading','running','hiking']
}
index = ['user1','user2','user3']
frame = pd.DataFrame(data,index)
print(frame.stack())

输出

user1  user       zszxz
       price        100
       hobby    reading
user2  user      craler
       price        200
       hobby    running
user3  user        rose
       price        300
       hobby     hiking
dtype: object

使用 unstack()将 数据结构重新返回

# -*- coding: utf-8 -*-

import pandas as pd
import numpy as np

data = {
  'user' : ['zszxz','craler','rose'],
  'price' : [100, 200, 300],
  'hobby' : ['reading','running','hiking']
}
index = ['user1','user2','user3']
frame = pd.DataFrame(data,index)
sta = frame.stack()
print(sta.unstack())

输出

         user price    hobby
user1   zszxz   100  reading
user2  craler   200  running
user3    rose   300   hiking

到此这篇关于pandas数据拼接的实现示例的文章就介绍到这了,更多相关pandas数据拼接内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家! 

更多精彩内容其他人还在看

python中seaborn包常用图形使用详解

今天小编就为大家分享一篇python中seaborn包常用图形使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy:找到指定元素的索引示例

今天小编就为大家分享一篇numpy:找到指定元素的索引示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python实现图片上添加图片

这篇文章主要为大家详细介绍了python实现图片上添加图片,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

从numpy数组中取出满足条件的元素示例

今天小编就为大家分享一篇从numpy数组中取出满足条件的元素示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python实现图片添加文字

这篇文章主要为大家详细介绍了Python实现图片添加文字,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

python实现在多维数组中挑选符合条件的全部元素

今天小编就为大家分享一篇python实现在多维数组中挑选符合条件的全部元素,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python如何使用BeautifulSoup爬取网页信息

这篇文章主要介绍了Python如何使用BeautifulSoup爬取网页信息,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

浅谈python已知元素,获取元素索引(numpy,pandas)

今天小编就为大家分享一篇浅谈python已知元素,获取元素索引(numpy,pandas),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy ndarray 按条件筛选数组,关联筛选的例子

今天小编就为大家分享一篇numpy ndarray 按条件筛选数组,关联筛选的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python pickle模块实现对象序列化

这篇文章主要介绍了Python pickle模块实现对象序列化,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多