Python爬虫爬取、解析数据操作示例

所属分类: 脚本专栏 / python 阅读数: 584
收藏 0 赞 0 分享

本文实例讲述了Python爬虫爬取、解析数据操作。分享给大家供大家参考,具体如下:

爬虫 当当网 http://search.dangdang.com/?key=python&act=input&page_index=1

  1. 获取书籍相关信息
  2. 面向对象思想
  3. 利用不同解析方式和存储方式

引用相关库

import requests
import re
import csv
import pymysql
from bs4 import BeautifulSoup
from lxml import etree
import lxml
from lxml import html

类代码实现部分

class DDSpider(object):
  #对象属性 参数 关键字 页数
  def __init__(self,key='python',page=1):
    self.url = 'http://search.dangdang.com/?key='+key+'&act=input&page_index={}'
    self.page = page
    self.headers = {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.116 Safari/537.36'}

    
  #私有对象方法
  def __my_url(self):
    my_url = []
    if self.page < 1:
      my_page = 2
    else:
      my_page = self.page+1
    #循环遍历每一页
    for i in range(1,my_page):
      my_url.append(self.url.format(i))
    return my_url
  
  #私有对象方法 请求数据
  def __my_request(self,url,parser_type):
    #循环遍历每一页
    response = requests.get(url=url,headers=self.headers)
    if response.status_code == 200:
      return self.__my_parser(response.text,parser_type)
    else:
      return None
    
  #私有对象方法 解析数据 1 利用正则 2 bs4 3 xpath
  def __my_parser(self,html,my_type=1):
    if my_type == 1:
      pattern = re.compile('<p.*?class=[\'\"]name[\'\"].*?name=[\'\"]title[\'\"].*?<a.*?title=[\'\"](.*?)[\'\"].*?href=[\'\"](.*?)[\'\"].*?name=[\'\"]itemlist-title[\'\"].*?<p class=[\'\"]detail[\'\"].*?>(.*?)</p>.*?<span.*?class=[\'\"]search_now_price[\'\"].*?>(.*?)</span>.*?<p.*?class=[\'\"]search_book_author[\'\"].*?><span>.*?<a.*?name=[\'\"]itemlist-author[\'\"].*?title=[\'\"](.*?)[\'\"].*?</span>',re.S)
      result = re.findall(pattern,html)
    elif my_type == 2:
      soup = BeautifulSoup(html,'lxml')
      result = []
      title_url = soup.find_all('a',attrs={'name':'itemlist-title'})
      for i in range(0,len(title_url)):
        title = soup.find_all('a',attrs={'name':'itemlist-title'})[i].attrs['title']
        url = soup.find_all('a',attrs={'name':'itemlist-title'})[i].attrs['href']
        price = soup.find_all('span',attrs={'class':'search_now_price'})[i].get_text()
        author = soup.find_all('a',attrs={'name':'itemlist-author'})[i].attrs['title']
        desc = soup.find_all('p',attrs={'class':'detail'})[i].get_text()
        my_tuple = (title,url,desc,price,author)
        result.append(my_tuple)
    else:
      html = etree.HTML(html)
      li_all = html.xpath('//div[@id="search_nature_rg"]/ul/li')
      result = []
      for i in range(len(li_all)):
        title = html.xpath('//div[@id="search_nature_rg"]/ul/li[{}]/p[@class="name"]/a/@title'.format(i+1))
        url = html.xpath('//div[@id="search_nature_rg"]/ul/li[{}]/p[@class="name"]/a/@href'.format(i+1))
        price = html.xpath('//div[@id="search_nature_rg"]/ul/li[{}]//span[@class="search_now_price"]/text()'.format(i+1))
        author_num = html.xpath('//div[@id="search_nature_rg"]/ul/li[{}]/p[@class="search_book_author"]/span[1]/a'.format(i+1))
        if len(author_num) != 0:
          #有作者 a标签
          author = html.xpath('//div[@id="search_nature_rg"]/ul/li[{}]/p[@class="search_book_author"]/span[1]/a[1]/@title'.format(i+1))
        else:
          #没有作者 a标签
          author = html.xpath('//div[@id="search_nature_rg"]/ul/li[{}]/p[@class="search_book_author"]/span[1]/text()'.format(i+1))
        desc = html.xpath('//div[@id="search_nature_rg"]/ul/li[{}]/p[@class="detail"]/text()'.format(i+1))
        my_tuple = (" ".join(title)," ".join(url)," ".join(desc)," ".join(price)," ".join(author))
        result.append(my_tuple)
        
    return result
  
  #私有对象方法 存储数据 1 txt 2 csv 3 mysql
  def __my_save(self,data,save_type=1):
    #循环遍历
    for value in data:
      if save_type == 1:
        with open('ddw.txt','a+',encoding="utf-8") as f:
          f.write('【名称】:{}【作者】:{}【价格】:{}【简介】:{}【链接】:{}'.format(value[0],value[4],value[3],value[2],value[1]))
      elif save_type == 2:
        with open('ddw.csv','a+',newline='',encoding='utf-8-sig') as f:
          writer = csv.writer(f)
          #转化为列表 存储
          writer.writerow(list(value))
      else:
        conn = pymysql.connect(host='127.0.0.1',user='root',passwd='',db='',port=3306,charset='utf8')
        cursor = conn.cursor()
        sql = ''
        cursor.execute(sql)
        conn.commit()
        cursor.close()
        conn.close()
  #公有对象方法 执行所有爬虫操作
  def my_run(self,parser_type=1,save_type=1):
    my_url = self.__my_url()
    for value in my_url:
      result = self.__my_request(value,parser_type)
      self.__my_save(result,save_type)

调用爬虫类实现数据获取

if __name__ == '__main__':
  #实例化创建对象
  dd = DDSpider('python',0)
  #参数 解析方式 my_run(parser_type,save_type)
  # parser_type 1 利用正则 2 bs4 3 xpath 
  #存储方式 save_type 1 txt 2 csv 3 mysql
  dd.my_run(2,1)

==总结一下: ==

1. 总体感觉正则表达式更简便一些 , 代码也会更简便 , 但是正则部分相对复杂和困难
2. bs4和xpath 需要对html代码有一定了解 , 取每条数据多个值时相对较繁琐

更多关于Python相关内容可查看本站专题:《Python Socket编程技巧总结》、《Python正则表达式用法总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

更多精彩内容其他人还在看

使用Python写一个量化股票提醒系统

这篇文章主要介绍了小白用Python写了一个股票提醒系统,迷你版量化系统,完美的实现了实时提醒功能,代码简单易懂,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

Python绘制的二项分布概率图示例

这篇文章主要介绍了Python绘制的二项分布概率图,涉及Python基于numpy、math的数值运算及matplotlib图形绘制相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python Learning 列表的更多操作及示例代码

这篇文章主要介绍了Python Learning-列表的更多操作,需要的朋友可以参考下
收藏 0 赞 0 分享

关于python列表增加元素的三种操作方法

这篇文章主要介绍了关于python列表增加元素的几种操作方法,主要有insert方法,extend方法和append方法,每种方法给大家介绍的非常详细,需要的朋友可以参考下
收藏 0 赞 0 分享

如何在python字符串中输入纯粹的{}

这篇文章主要介绍了如何在python字符串中输入纯粹的{}以及python字符串连接的三种方法,需要的朋友可以参考下
收藏 0 赞 0 分享

浅谈Django的缓存机制

这篇文章主要介绍了浅谈Django的缓存机制,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Django 限制用户访问频率的中间件的实现

这篇文章主要介绍了Django 限制用户访问频率的中间件的实现,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

示例详解Python3 or Python2 两者之间的差异

这篇文章主要介绍了Python3 or Python2?示例详解两者之间的差异,在本文中给大家介绍的非常详细,需要的朋友可以参考下
收藏 0 赞 0 分享

Python wxpython模块响应鼠标拖动事件操作示例

这篇文章主要介绍了Python wxpython模块响应鼠标拖动事件操作,结合实例形式分析了Python使用wxpython模块创建窗口、绑定事件及相应鼠标事件相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

使用Python实现一个栈判断括号是否平衡

栈(Stack)在计算机领域是一个被广泛应用的集合,栈是线性集合,访问都严格地限制在一段,叫做顶(top)。这篇文章主要介绍了使用Python实现一个栈判断括号是否平衡,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多