python实现梯度下降和逻辑回归

所属分类: 脚本专栏 / python 阅读数: 744
收藏 0 赞 0 分享

本文实例为大家分享了python实现梯度下降和逻辑回归的具体代码,供大家参考,具体内容如下

import numpy as np
import pandas as pd
import os
 
data = pd.read_csv("iris.csv") # 这里的iris数据已做过处理
m, n = data.shape
dataMatIn = np.ones((m, n))
dataMatIn[:, :-1] = data.ix[:, :-1]
classLabels = data.ix[:, -1]
 
# sigmoid函数和初始化数据
def sigmoid(z):
 return 1 / (1 + np.exp(-z))
 
# 随机梯度下降
def Stocgrad_descent(dataMatIn, classLabels):
 dataMatrix = np.mat(dataMatIn) # 训练集
 labelMat = np.mat(classLabels).transpose() # y值
 m, n = np.shape(dataMatrix) # m:dataMatrix的行数,n:dataMatrix的列数
 weights = np.ones((n, 1)) # 初始化回归系数(n, 1)
 alpha = 0.001 # 步长
 maxCycle = 500 # 最大循环次数
 epsilon = 0.001
 error = np.zeros((n,1))
 for i in range(maxCycle):
  for j in range(m):
   h = sigmoid(dataMatrix * weights) # sigmoid 函数
   weights = weights + alpha * dataMatrix.transpose() * (labelMat - h) # 梯度
  if np.linalg.norm(weights - error) < epsilon:
   break
  else:
   error = weights
  return weights
 
# 逻辑回归
def pred_result(dataMatIn):
 dataMatrix = np.mat(dataMatIn)
 r = Stocgrad_descent(dataMatIn, classLabels)
 p = sigmoid(dataMatrix * r) # 根据模型预测的概率
 
 # 预测结果二值化
 pred = []
 for i in range(len(data)):
  if p[i] > 0.5:
   pred.append(1)
  else:
   pred.append(0)
 data["pred"] = pred
 os.remove("data_and_pred.csv") # 删除List_lost_customers数据集 # 第一次运行此代码时此步骤不要
 data.to_csv("data_and_pred.csv", index=False, encoding="utf_8_sig") # 数据集保存
pred_result(dataMatIn)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

python中seaborn包常用图形使用详解

今天小编就为大家分享一篇python中seaborn包常用图形使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy:找到指定元素的索引示例

今天小编就为大家分享一篇numpy:找到指定元素的索引示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python实现图片上添加图片

这篇文章主要为大家详细介绍了python实现图片上添加图片,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

从numpy数组中取出满足条件的元素示例

今天小编就为大家分享一篇从numpy数组中取出满足条件的元素示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python实现图片添加文字

这篇文章主要为大家详细介绍了Python实现图片添加文字,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

python实现在多维数组中挑选符合条件的全部元素

今天小编就为大家分享一篇python实现在多维数组中挑选符合条件的全部元素,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python如何使用BeautifulSoup爬取网页信息

这篇文章主要介绍了Python如何使用BeautifulSoup爬取网页信息,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

浅谈python已知元素,获取元素索引(numpy,pandas)

今天小编就为大家分享一篇浅谈python已知元素,获取元素索引(numpy,pandas),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy ndarray 按条件筛选数组,关联筛选的例子

今天小编就为大家分享一篇numpy ndarray 按条件筛选数组,关联筛选的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python pickle模块实现对象序列化

这篇文章主要介绍了Python pickle模块实现对象序列化,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多