python实现梯度下降和逻辑回归

所属分类: 脚本专栏 / python 阅读数: 748
收藏 0 赞 0 分享

本文实例为大家分享了python实现梯度下降和逻辑回归的具体代码,供大家参考,具体内容如下

import numpy as np
import pandas as pd
import os
 
data = pd.read_csv("iris.csv") # 这里的iris数据已做过处理
m, n = data.shape
dataMatIn = np.ones((m, n))
dataMatIn[:, :-1] = data.ix[:, :-1]
classLabels = data.ix[:, -1]
 
# sigmoid函数和初始化数据
def sigmoid(z):
 return 1 / (1 + np.exp(-z))
 
# 随机梯度下降
def Stocgrad_descent(dataMatIn, classLabels):
 dataMatrix = np.mat(dataMatIn) # 训练集
 labelMat = np.mat(classLabels).transpose() # y值
 m, n = np.shape(dataMatrix) # m:dataMatrix的行数,n:dataMatrix的列数
 weights = np.ones((n, 1)) # 初始化回归系数(n, 1)
 alpha = 0.001 # 步长
 maxCycle = 500 # 最大循环次数
 epsilon = 0.001
 error = np.zeros((n,1))
 for i in range(maxCycle):
  for j in range(m):
   h = sigmoid(dataMatrix * weights) # sigmoid 函数
   weights = weights + alpha * dataMatrix.transpose() * (labelMat - h) # 梯度
  if np.linalg.norm(weights - error) < epsilon:
   break
  else:
   error = weights
  return weights
 
# 逻辑回归
def pred_result(dataMatIn):
 dataMatrix = np.mat(dataMatIn)
 r = Stocgrad_descent(dataMatIn, classLabels)
 p = sigmoid(dataMatrix * r) # 根据模型预测的概率
 
 # 预测结果二值化
 pred = []
 for i in range(len(data)):
  if p[i] > 0.5:
   pred.append(1)
  else:
   pred.append(0)
 data["pred"] = pred
 os.remove("data_and_pred.csv") # 删除List_lost_customers数据集 # 第一次运行此代码时此步骤不要
 data.to_csv("data_and_pred.csv", index=False, encoding="utf_8_sig") # 数据集保存
pred_result(dataMatIn)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

使用Python写一个量化股票提醒系统

这篇文章主要介绍了小白用Python写了一个股票提醒系统,迷你版量化系统,完美的实现了实时提醒功能,代码简单易懂,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

Python绘制的二项分布概率图示例

这篇文章主要介绍了Python绘制的二项分布概率图,涉及Python基于numpy、math的数值运算及matplotlib图形绘制相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python Learning 列表的更多操作及示例代码

这篇文章主要介绍了Python Learning-列表的更多操作,需要的朋友可以参考下
收藏 0 赞 0 分享

关于python列表增加元素的三种操作方法

这篇文章主要介绍了关于python列表增加元素的几种操作方法,主要有insert方法,extend方法和append方法,每种方法给大家介绍的非常详细,需要的朋友可以参考下
收藏 0 赞 0 分享

如何在python字符串中输入纯粹的{}

这篇文章主要介绍了如何在python字符串中输入纯粹的{}以及python字符串连接的三种方法,需要的朋友可以参考下
收藏 0 赞 0 分享

浅谈Django的缓存机制

这篇文章主要介绍了浅谈Django的缓存机制,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Django 限制用户访问频率的中间件的实现

这篇文章主要介绍了Django 限制用户访问频率的中间件的实现,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

示例详解Python3 or Python2 两者之间的差异

这篇文章主要介绍了Python3 or Python2?示例详解两者之间的差异,在本文中给大家介绍的非常详细,需要的朋友可以参考下
收藏 0 赞 0 分享

Python wxpython模块响应鼠标拖动事件操作示例

这篇文章主要介绍了Python wxpython模块响应鼠标拖动事件操作,结合实例形式分析了Python使用wxpython模块创建窗口、绑定事件及相应鼠标事件相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

使用Python实现一个栈判断括号是否平衡

栈(Stack)在计算机领域是一个被广泛应用的集合,栈是线性集合,访问都严格地限制在一段,叫做顶(top)。这篇文章主要介绍了使用Python实现一个栈判断括号是否平衡,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多