Python生成器常见问题及解决方案

所属分类: 脚本专栏 / python 阅读数: 891
收藏 0 赞 0 分享

在Python中,生成器和函数很像,都是在运行的过程中才会去确定各种变量的值,所以在很多情况下,会导致各种各样的问题。

def generator_test1():
  # 0...9 generator
  x = (i for i in range(10))
  # 5..9 generator
  x_filter = filter(lambda y: y >= 5, x)
  # first use the x
  L = list(x)
  print("L, x", L)
  # then use x_filter
  l = list(x_filter)
  print("l, x_filter", l)
if __name__ == "__main__":
  generator_test1()

输出结果为:

L, x [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
l, x_filter []

上述代码中,x_filter是基于生成器x构建的生成器,但是由于x在x_filter使用之前先被用掉了,所以在使用x_filter的时候,才去获取x的值,而此时x已经用完了,最终导致x_filter转化成的列表是空的。

def generator_test2():
  x = (i for i in range(10))
  for i in range(10):
    x = (j + i for j in x)
  L = list(x)
  print("L, x", L)
if __name__ == "__main__":
  generator_test2()

输出结果:

L, x [90, 91, 92, 93, 94, 95, 96, 97, 98, 99] 

上述代码中,每次循环都基于原先的生成器构建一个新的生成器,由于并未使用,所以生成器x中的i并没有被赋值。在后面转化成列表的时候才去获取i的值,而此时由于i为9,所以所有的生成器x的i都为9,原始的x是0到9的生成器,接下来的10个生成器每个都在原始值上加9,导致每个值都增大了90。下面是此例的一个变体:

def generator_test3():
  x = (i for i in range(10))
  for i in range(10):
    x = (j + i for j in x)
  i = 20
  L = list(x)
  print("L, x", L)
 
if __name__ == "__main__":
  generator_test3()

输出结果:

L, x [200, 201, 202, 203, 204, 205, 206, 207, 208, 209]

上述代码表明,可以临时改变i从而让生成器发生改变。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

python中seaborn包常用图形使用详解

今天小编就为大家分享一篇python中seaborn包常用图形使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy:找到指定元素的索引示例

今天小编就为大家分享一篇numpy:找到指定元素的索引示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python实现图片上添加图片

这篇文章主要为大家详细介绍了python实现图片上添加图片,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

从numpy数组中取出满足条件的元素示例

今天小编就为大家分享一篇从numpy数组中取出满足条件的元素示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python实现图片添加文字

这篇文章主要为大家详细介绍了Python实现图片添加文字,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

python实现在多维数组中挑选符合条件的全部元素

今天小编就为大家分享一篇python实现在多维数组中挑选符合条件的全部元素,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python如何使用BeautifulSoup爬取网页信息

这篇文章主要介绍了Python如何使用BeautifulSoup爬取网页信息,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

浅谈python已知元素,获取元素索引(numpy,pandas)

今天小编就为大家分享一篇浅谈python已知元素,获取元素索引(numpy,pandas),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy ndarray 按条件筛选数组,关联筛选的例子

今天小编就为大家分享一篇numpy ndarray 按条件筛选数组,关联筛选的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python pickle模块实现对象序列化

这篇文章主要介绍了Python pickle模块实现对象序列化,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多