Python多线程多进程实例对比解析

所属分类: 脚本专栏 / python 阅读数: 550
收藏 0 赞 0 分享

多线程适合于多io操作

多进程适合于耗cpu(计算)的操作

# 多进程编程
# 耗cpu的操作,用多进程编程, 对于io操作来说,使用多线程编程
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from concurrent.futures import ProcessPoolExecutor


def fib(n):
  if n <= 2:
    return 1
  return fib(n - 2) + fib(n - 1)

if __name__ == '__main__':

  # 1. 对于耗cpu操作,多进程优于多线程

  # with ThreadPoolExecutor(3) as executor:
  #   all_task = [executor.submit(fib, num) for num in range(25, 35)]
  #   start_time = time.time()
  #   for future in as_completed(all_task):
  #     data = future.result()
  #     print(data)
  #   print("last time :{}".format(time.time() - start_time)) # 3.905290126800537

  # 多进程 ,在window环境 下必须放在main方法中执行,否则抛异常
  with ProcessPoolExecutor(3) as executor:
    all_task = [executor.submit(fib, num) for num in range(25, 35)]
    start_time = time.time()
    for future in as_completed(all_task):
      data = future.result()
      print(data)
    print("last time :{}".format(time.time() - start_time)) # 2.6130592823028564

可以看到在耗cpu的应用中,多进程明显优于多线程 2.6130592823028564 < 3.905290126800537

下面模拟一个io操作

# 多进程编程
# 耗cpu的操作,用多进程编程, 对于io操作来说,使用多线程编程
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from concurrent.futures import ProcessPoolExecutor

def io_operation(n):
  time.sleep(2)
  return n


if __name__ == '__main__':

  # 1. 对于耗cpu操作,多进程优于多线程

  # with ThreadPoolExecutor(3) as executor:
  #   all_task = [executor.submit(io_operation, num) for num in range(25, 35)]
  #   start_time = time.time()
  #   for future in as_completed(all_task):
  #     data = future.result()
  #     print(data)
  #   print("last time :{}".format(time.time() - start_time)) # 8.00358772277832



  # 多进程 ,在window环境 下必须放在main方法中执行,否则抛异常
  with ProcessPoolExecutor(3) as executor:
    all_task = [executor.submit(io_operation, num) for num in range(25, 35)]
    start_time = time.time()
    for future in as_completed(all_task):
      data = future.result()
      print(data)
    print("last time :{}".format(time.time() - start_time)) # 8.12435245513916

可以看到 8.00358772277832 < 8.12435245513916, 即是多线程比多进程更牛逼!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

python中seaborn包常用图形使用详解

今天小编就为大家分享一篇python中seaborn包常用图形使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy:找到指定元素的索引示例

今天小编就为大家分享一篇numpy:找到指定元素的索引示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python实现图片上添加图片

这篇文章主要为大家详细介绍了python实现图片上添加图片,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

从numpy数组中取出满足条件的元素示例

今天小编就为大家分享一篇从numpy数组中取出满足条件的元素示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python实现图片添加文字

这篇文章主要为大家详细介绍了Python实现图片添加文字,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

python实现在多维数组中挑选符合条件的全部元素

今天小编就为大家分享一篇python实现在多维数组中挑选符合条件的全部元素,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python如何使用BeautifulSoup爬取网页信息

这篇文章主要介绍了Python如何使用BeautifulSoup爬取网页信息,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

浅谈python已知元素,获取元素索引(numpy,pandas)

今天小编就为大家分享一篇浅谈python已知元素,获取元素索引(numpy,pandas),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy ndarray 按条件筛选数组,关联筛选的例子

今天小编就为大家分享一篇numpy ndarray 按条件筛选数组,关联筛选的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python pickle模块实现对象序列化

这篇文章主要介绍了Python pickle模块实现对象序列化,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多