python3中sorted函数里cmp参数改变详解

所属分类: 脚本专栏 / python 阅读数: 319
收藏 0 赞 0 分享

今天在刷leetcode的时候,对于179题返回最大数,用python2中的sorted(cmp)会很方便,但是在python3中这一参数被取消了,经过查找,发现应该借助functools中的cmp_to_key函数,直接贴代码

import functools
def cmp(a,b):
  if a > b :
    return -1
  elif a < b :
    return 1
  else:
    return 0
    
nums = [1,2,3,4,5,6]
sorted_nums = sorted(nums, key = functools.cmp_to_key(cmp))

Out[30]: [6,5,4, 3, 2, 1]

但注意需要转换的cmp函数的返回值必须是0, 1, -1

知识点扩展:

为什么Python中sort方法和sorted函数调用废弃使用cmp参数

Python中sort方法和sorted函数老猿在前面一些章节介绍过,具体语法及含义在此不再展开说明,但老猿在前面学习相关内容时,只使用了简单的案例,对这两个方法的key参数没有深入研究,总以为就是以前c语言排序算法中的cmp函数。今天在研究富比较方法的运用时才发现key根本不是cmp函数,而是一个只针对比较元素自身的函数,不像cmp函数是两个对象之间比较。
经查阅资料和测试,发现其实早期的Python版本中是提供了cmp函数的,其版本演进沿革如下:
Python2.1以前的排序比较方法只提供一个__cmp__方法,没有__lt__等6个富比较方法, Python 2.1引入了富比较方法,Python3.4之后作废了__cmp__方法。相应地从Python2.4开始,list.sort() 和 sorted() 都增加了一个 ‘key' 参数用来在进行比较之前指定每个列表元素上要调用的函数。
为什么要这么处理呢?这是因为cmp方法本身也是针对对象的特定元素来进行比较的,直接使用特定元素的值更快捷、效率更高。

更多精彩内容其他人还在看

python中seaborn包常用图形使用详解

今天小编就为大家分享一篇python中seaborn包常用图形使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy:找到指定元素的索引示例

今天小编就为大家分享一篇numpy:找到指定元素的索引示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python实现图片上添加图片

这篇文章主要为大家详细介绍了python实现图片上添加图片,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

从numpy数组中取出满足条件的元素示例

今天小编就为大家分享一篇从numpy数组中取出满足条件的元素示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python实现图片添加文字

这篇文章主要为大家详细介绍了Python实现图片添加文字,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

python实现在多维数组中挑选符合条件的全部元素

今天小编就为大家分享一篇python实现在多维数组中挑选符合条件的全部元素,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python如何使用BeautifulSoup爬取网页信息

这篇文章主要介绍了Python如何使用BeautifulSoup爬取网页信息,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

浅谈python已知元素,获取元素索引(numpy,pandas)

今天小编就为大家分享一篇浅谈python已知元素,获取元素索引(numpy,pandas),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy ndarray 按条件筛选数组,关联筛选的例子

今天小编就为大家分享一篇numpy ndarray 按条件筛选数组,关联筛选的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python pickle模块实现对象序列化

这篇文章主要介绍了Python pickle模块实现对象序列化,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多