Python序列化pickle模块使用详解

所属分类: 脚本专栏 / python 阅读数: 843
收藏 0 赞 0 分享

用于序列化的两个模块

  •   json:用于字符串和Python数据类型间进行转换
  •   pickle: 用于python特有的类型和python的数据类型间进行转换
  •   json提供四个功能:dumps,dump,loads,load
  •   pickle提供四个功能:dumps,dump,loads,load

pickle可以存储什么类型的数据呢?

所有python支持的原生类型:布尔值,整数,浮点数,复数,字符串,字节,None。

由任何原生类型组成的列表,元组,字典和集合。

函数,类,类的实例

pickle模块中常用的方法有:

1. pickle.dump(obj, file, protocol=None,)

必填参数obj表示将要封装的对象

必填参数file表示obj要写入的文件对象,file必须以二进制可写模式打开,即“wb”

可选参数protocol表示告知pickler使用的协议,支持的协议有0,1,2,3,默认的协议是添加在Python 3中的协议3。   

  • Protocol version 0 is the original “human-readable” protocol and is backwards compatible with earlier versions of Python.
  • Protocol version 1 is an old binary format which is also compatible with earlier versions of Python.
  • Protocol version 2 was introduced in Python 2.3. It provides much more efficient pickling of new-style classes. Refer to PEP 307 for information about improvements brought by protocol 2.
  • Protocol version 3 was added in Python 3.0. It has explicit support for bytes objects and cannot be unpickled by Python 2.x. This is the default protocol, and the recommended protocol when compatibility with other Python 3 versions is required.
  • Protocol version 4 was added in Python 3.4. It adds support for very large objects, pickling more kinds of objects, and some data format optimizations. Refer to PEP 3154 for information about improvements brought by protocol 4.

2. pickle.load(file,*,fix_imports=True, encoding="ASCII", errors="strict")

必填参数file必须以二进制可读模式打开,即“rb”,其他都为可选参数

3. pickle.dumps(obj):以字节对象形式返回封装的对象,不需要写入文件中

4. pickle.loads(bytes_object): 从字节对象中读取被封装的对象,并返回

pickle模块可能出现三种异常:

1. PickleError:封装和拆封时出现的异常类,继承自Exception

2. PicklingError: 遇到不可封装的对象时出现的异常,继承自PickleError

3. UnPicklingError: 拆封对象过程中出现的异常,继承自PickleError

应用:

# dumps功能
import pickle
data = ['aa', 'bb', 'cc'] 
# dumps 将数据通过特殊的形式转换为只有python语言认识的字符串
p_str = pickle.dumps(data)
print(p_str)   7 b'\x80\x03]q\x00(X\x02\x00\x00\x00aaq\x01X\x02\x00\x00\x00bbq\x02X\x02\x00\x00\x00ccq\x03e.
 # loads功能
 # loads 将pickle数据转换为python的数据结构
 mes = pickle.loads(p_str)
 print(mes)
 ['aa', 'bb', 'cc']
 # dump功能
 # dump 将数据通过特殊的形式转换为只有python语言认识的字符串,并写入文件
 with open('D:/tmp.pk', 'w') as f:
  pickle.dump(data, f)
 # load功能
 # load 从数据文件中读取数据,并转换为python的数据结构
 with open('D:/tmp.pk', 'r') as f:
  data = pickle.load(f)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

python中seaborn包常用图形使用详解

今天小编就为大家分享一篇python中seaborn包常用图形使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy:找到指定元素的索引示例

今天小编就为大家分享一篇numpy:找到指定元素的索引示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python实现图片上添加图片

这篇文章主要为大家详细介绍了python实现图片上添加图片,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

从numpy数组中取出满足条件的元素示例

今天小编就为大家分享一篇从numpy数组中取出满足条件的元素示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python实现图片添加文字

这篇文章主要为大家详细介绍了Python实现图片添加文字,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

python实现在多维数组中挑选符合条件的全部元素

今天小编就为大家分享一篇python实现在多维数组中挑选符合条件的全部元素,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python如何使用BeautifulSoup爬取网页信息

这篇文章主要介绍了Python如何使用BeautifulSoup爬取网页信息,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

浅谈python已知元素,获取元素索引(numpy,pandas)

今天小编就为大家分享一篇浅谈python已知元素,获取元素索引(numpy,pandas),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy ndarray 按条件筛选数组,关联筛选的例子

今天小编就为大家分享一篇numpy ndarray 按条件筛选数组,关联筛选的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python pickle模块实现对象序列化

这篇文章主要介绍了Python pickle模块实现对象序列化,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多