在pytorch中实现只让指定变量向后传播梯度

所属分类: 脚本专栏 / python 阅读数: 1270
收藏 0 赞 0 分享

pytorch中如何只让指定变量向后传播梯度?

(或者说如何让指定变量不参与后向传播?)

有以下公式,假如要让L对xvar求导:

(1)中,L对xvar的求导将同时计算out1部分和out2部分;

(2)中,L对xvar的求导只计算out2部分,因为out1的requires_grad=False;

(3)中,L对xvar的求导只计算out1部分,因为out2的requires_grad=False;

验证如下:

#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Wed May 23 10:02:04 2018
@author: hy
"""
 
import torch
from torch.autograd import Variable
print("Pytorch version: {}".format(torch.__version__))
x=torch.Tensor([1])
xvar=Variable(x,requires_grad=True)
y1=torch.Tensor([2])
y2=torch.Tensor([7])
y1var=Variable(y1)
y2var=Variable(y2)
#(1)
print("For (1)")
print("xvar requres_grad: {}".format(xvar.requires_grad))
print("y1var requres_grad: {}".format(y1var.requires_grad))
print("y2var requres_grad: {}".format(y2var.requires_grad))
out1 = xvar*y1var
print("out1 requres_grad: {}".format(out1.requires_grad))
out2 = xvar*y2var
print("out2 requres_grad: {}".format(out2.requires_grad))
L=torch.pow(out1-out2,2)
L.backward()
print("xvar.grad: {}".format(xvar.grad))
xvar.grad.data.zero_()
#(2)
print("For (2)")
print("xvar requres_grad: {}".format(xvar.requires_grad))
print("y1var requres_grad: {}".format(y1var.requires_grad))
print("y2var requres_grad: {}".format(y2var.requires_grad))
out1 = xvar*y1var
print("out1 requres_grad: {}".format(out1.requires_grad))
out2 = xvar*y2var
print("out2 requres_grad: {}".format(out2.requires_grad))
out1 = out1.detach()
print("after out1.detach(), out1 requres_grad: {}".format(out1.requires_grad))
L=torch.pow(out1-out2,2)
L.backward()
print("xvar.grad: {}".format(xvar.grad))
xvar.grad.data.zero_()
#(3)
print("For (3)")
print("xvar requres_grad: {}".format(xvar.requires_grad))
print("y1var requres_grad: {}".format(y1var.requires_grad))
print("y2var requres_grad: {}".format(y2var.requires_grad))
out1 = xvar*y1var
print("out1 requres_grad: {}".format(out1.requires_grad))
out2 = xvar*y2var
print("out2 requres_grad: {}".format(out2.requires_grad))
#out1 = out1.detach()
out2 = out2.detach()
print("after out2.detach(), out2 requres_grad: {}".format(out1.requires_grad))
L=torch.pow(out1-out2,2)
L.backward()
print("xvar.grad: {}".format(xvar.grad))
xvar.grad.data.zero_()

pytorch中,将变量的requires_grad设为False,即可让变量不参与梯度的后向传播;

但是不能直接将out1.requires_grad=False;

其实,Variable类型提供了detach()方法,所返回变量的requires_grad为False。

注意:如果out1和out2的requires_grad都为False的话,那么xvar.grad就出错了,因为梯度没有传到xvar

补充:

volatile=True表示这个变量不计算梯度, 参考:Volatile is recommended for purely inference mode, when you're sure you won't be even calling .backward(). It's more efficient than any other autograd setting - it will use the absolute minimal amount of memory to evaluate the model. volatile also determines that requires_grad is False.

以上这篇在pytorch中实现只让指定变量向后传播梯度就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

python中seaborn包常用图形使用详解

今天小编就为大家分享一篇python中seaborn包常用图形使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy:找到指定元素的索引示例

今天小编就为大家分享一篇numpy:找到指定元素的索引示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python实现图片上添加图片

这篇文章主要为大家详细介绍了python实现图片上添加图片,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

从numpy数组中取出满足条件的元素示例

今天小编就为大家分享一篇从numpy数组中取出满足条件的元素示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python实现图片添加文字

这篇文章主要为大家详细介绍了Python实现图片添加文字,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

python实现在多维数组中挑选符合条件的全部元素

今天小编就为大家分享一篇python实现在多维数组中挑选符合条件的全部元素,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python如何使用BeautifulSoup爬取网页信息

这篇文章主要介绍了Python如何使用BeautifulSoup爬取网页信息,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

浅谈python已知元素,获取元素索引(numpy,pandas)

今天小编就为大家分享一篇浅谈python已知元素,获取元素索引(numpy,pandas),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy ndarray 按条件筛选数组,关联筛选的例子

今天小编就为大家分享一篇numpy ndarray 按条件筛选数组,关联筛选的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python pickle模块实现对象序列化

这篇文章主要介绍了Python pickle模块实现对象序列化,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多