python代码实现TSNE降维数据可视化教程

所属分类: 脚本专栏 / python 阅读数: 1875
收藏 0 赞 0 分享

TSNE降维

降维就是用2维或3维表示多维数据(彼此具有相关性的多个特征数据)的技术,利用降维算法,可以显式地表现数据。(t-SNE)t分布随机邻域嵌入 是一种用于探索高维数据的非线性降维算法。它将多维数据映射到适合于人类观察的两个或多个维度。

python代码

km.py

#k_mean算法
import pandas as pd
import csv
import pandas as pd 
import numpy as np
 
 
#参数初始化
inputfile = 'x.xlsx' #销量及其他属性数据
outputfile = 'x_1.xlsx' #保存结果的文件名
k = 2 #聚类的类别
iteration = 3 #聚类最大循环次数
 
data = pd.read_excel(inputfile, index_col = 'Id') #读取数据
 
data_zs = 1.0*(data - data.mean())/data.std() #数据标准化,std()表示求总体样本方差(除以n-1),numpy中std()是除以n
 
print('data_zs')
 
from sklearn.cluster import KMeans
model = KMeans(n_clusters = k, max_iter = iteration) #分为k类
#model = KMeans(n_clusters = k, n_jobs = 4, max_iter = iteration) #分为k类,并发数4
print('data_zs')
model.fit(data_zs) #开始聚类
 
#简单打印结果
r1 = pd.Series(model.labels_).value_counts() #统计各个类别的数目
r2 = pd.DataFrame(model.cluster_centers_) #找出聚类中心
r = pd.concat([r2, r1], axis = 1) #横向连接(0是纵向),得到聚类中心对应的类别下的数目
print('data_zs')
print(r)
r.columns = list(data.columns) + [u'类别数目'] #重命名表头
print(r)
 
#详细输出原始数据及其类别
 
r = pd.concat([data, pd.Series(model.labels_, index = data.index)], axis = 1) #详细输出每个样本对应的类别
r.columns = list(data.columns) + [u'聚类类别'] #重命名表头
r.to_excel(outputfile) #保存结果

TSNE.py

# coding=utf-8
 
from sklearn.manifold import TSNE 
from pandas.core.frame import DataFrame
import pandas as pd 
import numpy as np 
 
import km as k 
#用TSNE进行数据降维并展示聚类结果
 
tsne = TSNE()
tsne.fit_transform(k.data_zs) #进行数据降维,并返回结果
tsne = pd.DataFrame(tsne.embedding_, index = k.data_zs.index) #转换数据格式
 
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
 
#不同类别用不同颜色和样式绘图
d = tsne[k.r[u'聚类类别']== 0]  #找出聚类类别为0的数据对应的降维结果
plt.plot(d[0], d[1], 'r.')
d = tsne[k.r[u'聚类类别'] == 1]
plt.plot(d[0], d[1], 'go')
#d = tsne[k.r[u'聚类类别'] == 2]
#plt.plot(d[0], d[1], 'b*')
plt.savefig("data.png")
plt.show()

数据格式

数据需要用xlsx文件存储,表头名为Id。

执行 TSNE.py即可获得可视化图片。

以上这篇python代码实现TSNE降维数据可视化教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

python中seaborn包常用图形使用详解

今天小编就为大家分享一篇python中seaborn包常用图形使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy:找到指定元素的索引示例

今天小编就为大家分享一篇numpy:找到指定元素的索引示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python实现图片上添加图片

这篇文章主要为大家详细介绍了python实现图片上添加图片,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

从numpy数组中取出满足条件的元素示例

今天小编就为大家分享一篇从numpy数组中取出满足条件的元素示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python实现图片添加文字

这篇文章主要为大家详细介绍了Python实现图片添加文字,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

python实现在多维数组中挑选符合条件的全部元素

今天小编就为大家分享一篇python实现在多维数组中挑选符合条件的全部元素,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python如何使用BeautifulSoup爬取网页信息

这篇文章主要介绍了Python如何使用BeautifulSoup爬取网页信息,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

浅谈python已知元素,获取元素索引(numpy,pandas)

今天小编就为大家分享一篇浅谈python已知元素,获取元素索引(numpy,pandas),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

numpy ndarray 按条件筛选数组,关联筛选的例子

今天小编就为大家分享一篇numpy ndarray 按条件筛选数组,关联筛选的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python pickle模块实现对象序列化

这篇文章主要介绍了Python pickle模块实现对象序列化,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多