Python 基于FIR实现Hilbert滤波器求信号包络详解

所属分类: 脚本专栏 / python 阅读数: 459
收藏 0 赞 0 分享

在通信领域,可以通过希尔伯特变换求解解析信号,进而求解窄带信号的包络。

实现希尔伯特变换有两种方法,一种是对信号做FFT,单后只保留单边频谱,在做IFFT,我们称之为频域方法;另一种是基于FIR根据传递函数设计一个希尔伯特滤波器,我们称之为时域方法。

# -*- coding:utf8 -*-
# @TIME   : 2019/4/11 18:30
# @Author  : SuHao
# @File   : hilberfilter.py


import scipy.signal as signal
import numpy as np
import librosa as lib
import matplotlib.pyplot as plt
import time
# from preprocess_filter import *

# 读取音频文件
ex = '..\\..\\数据集2\\pre2012\\bflute\\BassFlute.ff.C5B5.aiff'
time_series, fs = lib.load(ex, sr=None, mono=True, res_type='kaiser_best')

# 生成一个chirp信号
# duration = 2.0
# fs = 400.0
# samples = int(fs*duration)
# t = np.arange(samples) / fs
# time_series = signal.chirp(t, 20.0, t[-1], 100.0)
# time_series *= (1.0 + 0.5 * np.sin(2.0*np.pi*3.0*t) )

def hilbert_filter(x, fs, order=201, pic=None):
  '''
  :param x: 输入信号
  :param fs: 信号采样频率
  :param order: 希尔伯特滤波器阶数
  :param pic: 是否绘图,bool
  :return: 包络信号
  '''
  co = [2*np.sin(np.pi*n/2)**2/np.pi/n for n in range(1, order+1)]
  co1 = [2*np.sin(np.pi*n/2)**2/np.pi/n for n in range(-order, 0)]
  co = co1+[0]+ co
  # out = signal.filtfilt(b=co, a=1, x=x, padlen=int((order-1)/2))
  out = signal.convolve(x, co, mode='same', method='direct')
  envolope = np.sqrt(out**2 + x**2)
  if pic is not None:
    w, h = signal.freqz(b=co, a=1, worN=2048, whole=False, plot=None, fs=2*np.pi)
    fig, ax1 = plt.subplots()
    ax1.set_title('hilbert filter frequency response')
    ax1.plot(w, 20 * np.log10(abs(h)), 'b')
    ax1.set_ylabel('Amplitude [dB]', color='b')
    ax1.set_xlabel('Frequency [rad/sample]')
    ax2 = ax1.twinx()
    angles = np.unwrap(np.angle(h))
    ax2.plot(w, angles, 'g')
    ax2.set_ylabel('Angle (radians)', color='g')
    ax2.grid()
    ax2.axis('tight')
    # plt.savefig(pic + 'hilbert_filter.jpg')
    plt.show()
    # plt.clf()
    # plt.close()
  return envolope

start = time.time()
env0 = hilbert_filter(time_series, fs, 81, pic=True)
end = time.time()
a = end-start
print(a)

plt.figure()
ax1 = plt.subplot(211)
plt.plot(time_series)
ax2 = plt.subplot(212)
plt.plot(env0)
plt.xlabel('time')
plt.ylabel('mag')
plt.title('envolope of music by FIR \n time:%.3f'%a)
plt.tight_layout()

start = time.time()
# 使用scipy库函数实现希尔伯特变换
env = np.abs(signal.hilbert(time_series))
end = time.time()
a = end-start
print(a)


plt.figure()
ax1 = plt.subplot(211)
plt.plot(time_series)
ax2 = plt.subplot(212)
plt.plot(env)
plt.xlabel('time')
plt.ylabel('mag')
plt.title('envolope of music by scipy \n time:%.3f'%a)
plt.tight_layout()
plt.show()

使用chirp信号对两种方法进行比较

FIR滤波器的频率响应

使用音频信号对两种方法进行比较

由于音频信号时间较长,采样率较高,因此离散信号序列很长。使用频域方法做FFT和IFFT要耗费比较长的时间;然而使用时域方法只是和滤波器冲击响应做卷积,因此运算速度比较快。结果对比如下:

频域方法结果

时域方法结果

由此看出,时域方法耗费时间要远小于频域方法。

以上这篇Python 基于FIR实现Hilbert滤波器求信号包络详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现图像几何变换

这篇文章主要介绍了Python实现图像几何变换的方法,实例分析了Python基于Image模块实现图像翻转、旋转、改变大小等操作的相关技巧,非常简单实用,需要的朋友可以参考下
收藏 0 赞 0 分享

Python中的urllib模块使用详解

这篇文章主要介绍了Python中的urllib模块使用详解,是Python入门学习中的基础知识,需要的朋友可以参考下
收藏 0 赞 0 分享

Python的多态性实例分析

这篇文章主要介绍了Python的多态性,以实例形式深入浅出的分析了Python在面向对象编程中多态性的原理与实现方法,需要的朋友可以参考下
收藏 0 赞 0 分享

python生成IP段的方法

这篇文章主要介绍了python生成IP段的方法,涉及Python文件读写及随机数操作的相关技巧,具有一定参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python操作redis的方法

这篇文章主要介绍了python操作redis的方法,包括Python针对redis的连接、设置、获取、删除等常用技巧,具有一定参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python妹子图简单爬虫实例

这篇文章主要介绍了python妹子图简单爬虫,实例分析了Python爬虫程序所涉及的页面源码获取、进度显示、正则匹配等技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

分析用Python脚本关闭文件操作的机制

这篇文章主要介绍了分析用Python脚本关闭文件操作的机制,作者分Python2.x版本和3.x版本两种情况进行了阐述,需要的朋友可以参考下
收藏 0 赞 0 分享

python实现搜索指定目录下文件及文件内搜索指定关键词的方法

这篇文章主要介绍了python实现搜索指定目录下文件及文件内搜索指定关键词的方法,可实现针对文件夹及文件内关键词的搜索功能,需要的朋友可以参考下
收藏 0 赞 0 分享

python中getaddrinfo()基本用法实例分析

这篇文章主要介绍了python中getaddrinfo()基本用法,实例分析了Python中使用getaddrinfo方法进行IP地址解析的基本技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

python查找指定具有相同内容文件的方法

这篇文章主要介绍了python查找指定具有相同内容文件的方法,涉及Python针对文件操作的相关技巧,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多