python计算波峰波谷值的方法(极值点)

所属分类: 脚本专栏 / python 阅读数: 1830
收藏 0 赞 0 分享

python求极值点主要用到scipy库。

1. 首先可先选择一个函数或者拟合一个函数,这里选择拟合数据:np.polyfit

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from scipy import signal #滤波等

xxx = np.arange(0, 1000)
yyy = np.sin(xxx*np.pi/180)

z1 = np.polyfit(xxx, yyy, 7) # 用7次多项式拟合
p1 = np.poly1d(z1) #多项式系数
print(p1) # 在屏幕上打印拟合多项式
yvals=p1(xxx) 

plt.plot(xxx, yyy, '*',label='original values')
plt.plot(xxx, yvals, 'r',label='polyfit values')
plt.xlabel('x axis')
plt.ylabel('y axis')
plt.legend(loc=4)
plt.title('polyfitting')
plt.show()

得到的图形是:

2. 求波峰值,也就是极大值,得到:signal.find_peaks

# 极值
num_peak_3 = signal.find_peaks(yvals, distance=10) #distance表极大值点的距离至少大于等于10个水平单位
print(num_peak_3[0])
print('the number of peaks is ' + str(len(num_peak_3[0])))
plt.plot(xxx, yyy, '*',label='original values')
plt.plot(xxx, yvals, 'r',label='polyfit values')
plt.xlabel('x axis')
plt.ylabel('y axis')
plt.legend(loc=4)
plt.title('polyfitting')
for ii in range(len(num_peak_3[0])):
 plt.plot(num_peak_3[0][ii], yvals[num_peak_3[0][ii]],'*',markersize=10)
plt.show()

3. 在可导的情形下,可以求导来求极值点,同时得到极大值和极小值点:np.polyder

yyyd = np.polyder(p1,1) # 1表示一阶导
print(yyyd)

此时:yyyd.r 即可就得导数为0的点,可以与上述的极大值点对应比较

4. 直接函数分别求极大值和极小值:signal.argrelextrema 函数

print(yvals[signal.argrelextrema(yvals, np.greater)]) #极大值的y轴, yvals为要求极值的序列
print(signal.argrelextrema(yvals, np.greater)) #极大值的x轴
peak_ind = signal.argrelextrema(yvals,np.greater)[0] #极大值点,改为np.less即可得到极小值点
plt.plot(xxx, yyy, '*',label='original values')
plt.plot(xxx, yvals, 'r',label='polyfit values')
plt.xlabel('x axis')
plt.ylabel('y axis')
plt.legend(loc=4)
plt.title('polyfitting')
plt.plot(signal.argrelextrema(yvals,np.greater)[0],yvals[signal.argrelextrema(yvals, np.greater)],'o', markersize=10) #极大值点
plt.plot(signal.argrelextrema(yvals,np.less)[0],yvals[signal.argrelextrema(yvals, np.less)],'+', markersize=10) #极小值点
plt.show()

以上所述是小编给大家介绍的python计算波峰波谷值的方法(极值点),希望对大家有所帮助,也非常感谢大家对脚本之家网站的支持!

更多精彩内容其他人还在看

使用Python写一个量化股票提醒系统

这篇文章主要介绍了小白用Python写了一个股票提醒系统,迷你版量化系统,完美的实现了实时提醒功能,代码简单易懂,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

Python绘制的二项分布概率图示例

这篇文章主要介绍了Python绘制的二项分布概率图,涉及Python基于numpy、math的数值运算及matplotlib图形绘制相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python Learning 列表的更多操作及示例代码

这篇文章主要介绍了Python Learning-列表的更多操作,需要的朋友可以参考下
收藏 0 赞 0 分享

关于python列表增加元素的三种操作方法

这篇文章主要介绍了关于python列表增加元素的几种操作方法,主要有insert方法,extend方法和append方法,每种方法给大家介绍的非常详细,需要的朋友可以参考下
收藏 0 赞 0 分享

如何在python字符串中输入纯粹的{}

这篇文章主要介绍了如何在python字符串中输入纯粹的{}以及python字符串连接的三种方法,需要的朋友可以参考下
收藏 0 赞 0 分享

浅谈Django的缓存机制

这篇文章主要介绍了浅谈Django的缓存机制,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Django 限制用户访问频率的中间件的实现

这篇文章主要介绍了Django 限制用户访问频率的中间件的实现,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

示例详解Python3 or Python2 两者之间的差异

这篇文章主要介绍了Python3 or Python2?示例详解两者之间的差异,在本文中给大家介绍的非常详细,需要的朋友可以参考下
收藏 0 赞 0 分享

Python wxpython模块响应鼠标拖动事件操作示例

这篇文章主要介绍了Python wxpython模块响应鼠标拖动事件操作,结合实例形式分析了Python使用wxpython模块创建窗口、绑定事件及相应鼠标事件相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

使用Python实现一个栈判断括号是否平衡

栈(Stack)在计算机领域是一个被广泛应用的集合,栈是线性集合,访问都严格地限制在一段,叫做顶(top)。这篇文章主要介绍了使用Python实现一个栈判断括号是否平衡,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多