Tensorflow训练MNIST手写数字识别模型

所属分类: 脚本专栏 / python 阅读数: 1877
收藏 0 赞 0 分享

本文实例为大家分享了Tensorflow训练MNIST手写数字识别模型的具体代码,供大家参考,具体内容如下

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
 
INPUT_NODE = 784  # 输入层节点=图片像素=28x28=784
OUTPUT_NODE = 10  # 输出层节点数=图片类别数目
 
LAYER1_NODE = 500  # 隐藏层节点数,只有一个隐藏层
BATCH_SIZE = 100  # 一个训练包中的数据个数,数字越小
          # 越接近随机梯度下降,越大越接近梯度下降
 
LEARNING_RATE_BASE = 0.8   # 基础学习率
LEARNING_RATE_DECAY = 0.99  # 学习率衰减率
 
REGULARIZATION_RATE = 0.0001  # 正则化项系数
TRAINING_STEPS = 30000     # 训练轮数
MOVING_AVG_DECAY = 0.99    # 滑动平均衰减率
 
# 定义一个辅助函数,给定神经网络的输入和所有参数,计算神经网络的前向传播结果
def inference(input_tensor, avg_class, weights1, biases1,
       weights2, biases2):
 
 # 当没有提供滑动平均类时,直接使用参数当前取值
 if avg_class == None:
  # 计算隐藏层前向传播结果
  layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
  # 计算输出层前向传播结果
  return tf.matmul(layer1, weights2) + biases2
 else:
  # 首先计算变量的滑动平均值,然后计算前向传播结果
  layer1 = tf.nn.relu(
    tf.matmul(input_tensor, avg_class.average(weights1)) +
    avg_class.average(biases1))
  
  return tf.matmul(
    layer1, avg_class.average(weights2)) + avg_class.average(biases2)
 
# 训练模型的过程
def train(mnist):
 x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
 y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
 
 # 生成隐藏层参数
 weights1 = tf.Variable(
   tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
 biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
 
 # 生成输出层参数
 weights2 = tf.Variable(
   tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
 biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE]))
 
 # 计算前向传播结果,不使用参数滑动平均值 avg_class=None
 y = inference(x, None, weights1, biases1, weights2, biases2)
 
 # 定义训练轮数变量,指定为不可训练
 global_step = tf.Variable(0, trainable=False)
 
 # 给定滑动平均衰减率和训练轮数的变量,初始化滑动平均类
 variable_avgs = tf.train.ExponentialMovingAverage(
   MOVING_AVG_DECAY, global_step)
 
 # 在所有代表神经网络参数的可训练变量上使用滑动平均
 variables_avgs_op = variable_avgs.apply(tf.trainable_variables())
 
 # 计算使用滑动平均值后的前向传播结果
 avg_y = inference(x, variable_avgs, weights1, biases1, weights2, biases2)
 
 # 计算交叉熵作为损失函数
 cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
   logits=y, labels=tf.argmax(y_, 1))
 cross_entropy_mean = tf.reduce_mean(cross_entropy)
 
 # 计算L2正则化损失函数
 regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
 regularization = regularizer(weights1) + regularizer(weights2)
 
 loss = cross_entropy_mean + regularization
 
 # 设置指数衰减的学习率
 learning_rate = tf.train.exponential_decay(
   LEARNING_RATE_BASE,
   global_step,              # 当前迭代轮数
   mnist.train.num_examples / BATCH_SIZE, # 过完所有训练数据的迭代次数
   LEARNING_RATE_DECAY)
 
 
 # 优化损失函数
 train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(
   loss, global_step=global_step)
 
 # 反向传播同时更新神经网络参数及其滑动平均值
 with tf.control_dependencies([train_step, variables_avgs_op]):
  train_op = tf.no_op(name='train')
 
 # 检验使用了滑动平均模型的神经网络前向传播结果是否正确
 correct_prediction = tf.equal(tf.argmax(avg_y, 1), tf.argmax(y_, 1))
 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
 
 
 # 初始化会话并开始训练
 with tf.Session() as sess:
  tf.global_variables_initializer().run()
  
  # 准备验证数据,用于判断停止条件和训练效果
  validate_feed = {x: mnist.validation.images,
          y_: mnist.validation.labels}
  
  # 准备测试数据,用于模型优劣的最后评价标准
  test_feed = {x: mnist.test.images, y_: mnist.test.labels}
  
  # 迭代训练神经网络
  for i in range(TRAINING_STEPS):
   if i%1000 == 0:
    validate_acc = sess.run(accuracy, feed_dict=validate_feed)
    print("After %d training step(s), validation accuracy using average " 
       "model is %g " % (i, validate_acc))
    
   xs, ys = mnist.train.next_batch(BATCH_SIZE)
   sess.run(train_op, feed_dict={x: xs, y_: ys})
  
  # 训练结束后在测试集上检测模型的最终正确率
  test_acc = sess.run(accuracy, feed_dict=test_feed)
  print("After %d training steps, test accuracy using average model "
     "is %g " % (TRAINING_STEPS, test_acc))
  
  
# 主程序入口
def main(argv=None):
 mnist = input_data.read_data_sets("/tmp/data", one_hot=True)
 train(mnist)
 
# Tensorflow主程序入口
if __name__ == '__main__':
 tf.app.run()

输出结果如下:

Extracting /tmp/data/train-images-idx3-ubyte.gz
Extracting /tmp/data/train-labels-idx1-ubyte.gz
Extracting /tmp/data/t10k-images-idx3-ubyte.gz
Extracting /tmp/data/t10k-labels-idx1-ubyte.gz
After 0 training step(s), validation accuracy using average model is 0.0462 
After 1000 training step(s), validation accuracy using average model is 0.9784 
After 2000 training step(s), validation accuracy using average model is 0.9806 
After 3000 training step(s), validation accuracy using average model is 0.9798 
After 4000 training step(s), validation accuracy using average model is 0.9814 
After 5000 training step(s), validation accuracy using average model is 0.9826 
After 6000 training step(s), validation accuracy using average model is 0.9828 
After 7000 training step(s), validation accuracy using average model is 0.9832 
After 8000 training step(s), validation accuracy using average model is 0.9838 
After 9000 training step(s), validation accuracy using average model is 0.983 
After 10000 training step(s), validation accuracy using average model is 0.9836 
After 11000 training step(s), validation accuracy using average model is 0.9822 
After 12000 training step(s), validation accuracy using average model is 0.983 
After 13000 training step(s), validation accuracy using average model is 0.983 
After 14000 training step(s), validation accuracy using average model is 0.9844 
After 15000 training step(s), validation accuracy using average model is 0.9832 
After 16000 training step(s), validation accuracy using average model is 0.9844 
After 17000 training step(s), validation accuracy using average model is 0.9842 
After 18000 training step(s), validation accuracy using average model is 0.9842 
After 19000 training step(s), validation accuracy using average model is 0.9838 
After 20000 training step(s), validation accuracy using average model is 0.9834 
After 21000 training step(s), validation accuracy using average model is 0.9828 
After 22000 training step(s), validation accuracy using average model is 0.9834 
After 23000 training step(s), validation accuracy using average model is 0.9844 
After 24000 training step(s), validation accuracy using average model is 0.9838 
After 25000 training step(s), validation accuracy using average model is 0.9834 
After 26000 training step(s), validation accuracy using average model is 0.984 
After 27000 training step(s), validation accuracy using average model is 0.984 
After 28000 training step(s), validation accuracy using average model is 0.9836 
After 29000 training step(s), validation accuracy using average model is 0.9842 
After 30000 training steps, test accuracy using average model is 0.9839

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

使用Python写一个量化股票提醒系统

这篇文章主要介绍了小白用Python写了一个股票提醒系统,迷你版量化系统,完美的实现了实时提醒功能,代码简单易懂,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

Python绘制的二项分布概率图示例

这篇文章主要介绍了Python绘制的二项分布概率图,涉及Python基于numpy、math的数值运算及matplotlib图形绘制相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python Learning 列表的更多操作及示例代码

这篇文章主要介绍了Python Learning-列表的更多操作,需要的朋友可以参考下
收藏 0 赞 0 分享

关于python列表增加元素的三种操作方法

这篇文章主要介绍了关于python列表增加元素的几种操作方法,主要有insert方法,extend方法和append方法,每种方法给大家介绍的非常详细,需要的朋友可以参考下
收藏 0 赞 0 分享

如何在python字符串中输入纯粹的{}

这篇文章主要介绍了如何在python字符串中输入纯粹的{}以及python字符串连接的三种方法,需要的朋友可以参考下
收藏 0 赞 0 分享

浅谈Django的缓存机制

这篇文章主要介绍了浅谈Django的缓存机制,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Django 限制用户访问频率的中间件的实现

这篇文章主要介绍了Django 限制用户访问频率的中间件的实现,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

示例详解Python3 or Python2 两者之间的差异

这篇文章主要介绍了Python3 or Python2?示例详解两者之间的差异,在本文中给大家介绍的非常详细,需要的朋友可以参考下
收藏 0 赞 0 分享

Python wxpython模块响应鼠标拖动事件操作示例

这篇文章主要介绍了Python wxpython模块响应鼠标拖动事件操作,结合实例形式分析了Python使用wxpython模块创建窗口、绑定事件及相应鼠标事件相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

使用Python实现一个栈判断括号是否平衡

栈(Stack)在计算机领域是一个被广泛应用的集合,栈是线性集合,访问都严格地限制在一段,叫做顶(top)。这篇文章主要介绍了使用Python实现一个栈判断括号是否平衡,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多