pytorch中图像的数据格式实例

所属分类: 脚本专栏 / python 阅读数: 567
收藏 0 赞 0 分享

计算机视觉方面朋友都需要跟图像打交道,在pytorch中图像与我们平时在matlab中见到的图像数据格式有所不同。matlab中我们通常使用函数imread()来轻松地读入一张图像,我们在变量空间中可看到数据的存储方式是H x W x C的顺序(其中H、W、C分别表示图像的高、宽和通道数,通道数一般为RGB三通道),另外,其中的每一个数据都是[0,255]的整数。

在使用pytorch的时候,我们通常要使用pytorch中torchvision包下面的datasets模块和transforms模块。而通常情况下在我们使用了这两个模块之后,所处理的图像数据格式已经不是我们所熟知的格式了。

下面按照代码来进行讲解:

#导入需要的包和模块
import torch
from torchvision import datasets, transforms
import os
 
#transforms指明了需要对原始图像做何种变换
data_transforms = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
  ])
 
#指明了图像存放的位置;里面可能有好几个文件夹,分别存放不同种类的图像
data_dir = 'original_data'
image_dataset = datasets.ImageFolder(data_dir, data_transforms)
dataloader = torch.utils.data.DataLoader(image_dataset, batch_size=4, shuffle=True, num_workers=4)

代码中首先使用datasets模块读取图像数据,输出的图像类型为PILImage,并且图像中的每一个数据大小范围已经不再是[0,255],而是[0,1]。datasets模块下有好几个读取图像的类,比如CIFAR10、MNIST等能够直接获取标准数据库;而我们代码中所使用的类是ImageFolder,它能够读取本地存放的图像。其中需要指定图像所在文件路径和需要对数据进行的变换。

从上面的data_transforms变量中我们能够看出进行了多种变换,而Compose就是将多种变换组合起来的方法。data_transforms中一共包含了四个变换,前两个是对PILImage进行的,分别对其进行随机大小(默认原始图像大小的0.08-1.0)和随机宽高比(默认原始图像宽高比的3/4-4/3)的裁剪,之后resize到指定大小224;以及对原始图像进行随机(默认0.5概率)的水平翻转。

第三个transforms.ToTensor()的变换操作是关键一步,它将PILImage转变为torch.FloatTensor的数据形式,这种数据形式一定是C x H x W的图像格式加上[0,1]的大小范围。它将颜色通道这一维从第三维变换到了第一维。

后面的Normalize变换是对tensor这种数据格式进行的,它的操作是用给定的均值和标准差分别对每个通道的数据进行正则化。具体来说,给定均值(M1,...,Mn),给定标准差(S1,..,Sn),其中n是通道数(一般是3),对每个通道进行如下操作:

output[channel] = (input[channel] - mean[channel]) / std[channel]

经过上面一系列的转换之后,我们可以得出的结论是,图像的数据格式首先在维度的排序上发生了改变,其次数据的范围也发生了改变。

以上这篇pytorch中图像的数据格式实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多