TensorFlow命名空间和TensorBoard图节点实例

所属分类: 脚本专栏 / python 阅读数: 1269
收藏 0 赞 0 分享

一,命名空间函数

tf.variable_scope 
tf.name_scope 
先以下面的代码说明两者的区别

 # 命名空间管理函数
'''
说明tf.variable_scope和tf.name_scope的区别
'''
def manage_namespace():
 with tf.variable_scope("foo"):
  # 在命名空间foo下获取变量"bar",于是得到的变量名称为"foo/bar"。
  a = tf.get_variable("bar",[1]) #获取变量名称为“bar”的变量
  print a.name  #输出:foo/bar:0
 with tf.variable_scope("bar"):
  # 在命名空间bar下获取变量"bar",于是得到的变量名称为"bar/bar"。
  a = tf.get_variable("bar",[1])
  print a.name  #输出:bar/bar:0
 with tf.name_scope("a"):
  # 使用tf.Variable函数生成变量会受tf.name_scope影响,于是得到的变量名称为"a/Variable"。
  a = tf.Variable([1]) #新建变量
  print a.name  #输出:a/Variable:0

  # 使用tf.get_variable函数生成变量不受tf.name_scope影响,于是变量并不在a这个命名空间中。
  a = tf.get_variable("b",[1])
  print a.name  #输出:b:0
 with tf.name_scope("b"):
  # 使用tf.get_variable函数生成变量不受tf.name_scope影响,所以这里将试图获取名称
  # 为“b”的变量。然而这个变量已经被声明了,于是这里会报重复声明的错误
  tf.get_variable("b",[1])#提示错误

二,TensorBoard计算图查看

1 以以下代码实例,为指定任何的命名空间

def practice_num1():
# 练习1: 构建简单的计算图
 input1 = tf.constant([1.0, 2.0, 3.0],name="input1")
 input2 = tf.Variable(tf.random_uniform([3]),name="input2")
 output = tf.add_n([input1,input2],name = "add")

#生成一个写日志的writer,并将当前的tensorflow计算图写入日志
 writer = tf.summary.FileWriter(ROOT_DIR + "/log",tf.get_default_graph())
 writer.close()

如何使用TensorBoard的过程不再介绍。查看未指明命名空间的运算图

2 修改代码制定命名空间之后的代码

def practice_num1_modify():
 #将输入定义放入各自的命名空间中,从而使得tensorboard可以根据命名空间来整理可视化效果图上的节点
 # 练习1: 构建简单的计算图
 with tf.name_scope("input1"):
  input1 = tf.constant([1.0, 2.0, 3.0],name="input1")
 with tf.name_scope("input2"):
  input2 = tf.Variable(tf.random_uniform([3]),name="input2")
 output = tf.add_n([input1,input2],name = "add")

#生成一个写日志的writer,并将当前的tensorflow计算图写入日志
 writer = tf.summary.FileWriter(ROOT_DIR + "/log",tf.get_default_graph())
 writer.close()

查看运算图

上图只包含命名的两个命名空间的节点,我们可以点击名称“input2”的图标上的+号,展开该命名空间

效果:通过命名空间可以整理可视化效果图上的节点,使可视化的效果更加清晰。

以上这篇TensorFlow命名空间和TensorBoard图节点实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多