pytorch 利用lstm做mnist手写数字识别分类的实例

所属分类: 脚本专栏 / python 阅读数: 450
收藏 0 赞 0 分享

代码如下,U我认为对于新手来说最重要的是学会rnn读取数据的格式。

# -*- coding: utf-8 -*-
"""
Created on Tue Oct 9 08:53:25 2018
@author: www
"""
 
import sys
sys.path.append('..')
 
import torch
import datetime
from torch.autograd import Variable
from torch import nn
from torch.utils.data import DataLoader
 
from torchvision import transforms as tfs
from torchvision.datasets import MNIST
 
#定义数据
data_tf = tfs.Compose([
   tfs.ToTensor(),
   tfs.Normalize([0.5], [0.5])
])
train_set = MNIST('E:/data', train=True, transform=data_tf, download=True)
test_set = MNIST('E:/data', train=False, transform=data_tf, download=True)
 
train_data = DataLoader(train_set, 64, True, num_workers=4)
test_data = DataLoader(test_set, 128, False, num_workers=4)
 
#定义模型
class rnn_classify(nn.Module):
   def __init__(self, in_feature=28, hidden_feature=100, num_class=10, num_layers=2):
     super(rnn_classify, self).__init__()
     self.rnn = nn.LSTM(in_feature, hidden_feature, num_layers)#使用两层lstm
     self.classifier = nn.Linear(hidden_feature, num_class)#将最后一个的rnn使用全连接的到最后的输出结果
     
   def forward(self, x):
     #x的大小为(batch,1,28,28),所以我们需要将其转化为rnn的输入格式(28,batch,28)
     x = x.squeeze() #去掉(batch,1,28,28)中的1,变成(batch, 28,28)
     x = x.permute(2, 0, 1)#将最后一维放到第一维,变成(batch,28,28)
     out, _ = self.rnn(x) #使用默认的隐藏状态,得到的out是(28, batch, hidden_feature)
     out = out[-1,:,:]#取序列中的最后一个,大小是(batch, hidden_feature)
     out = self.classifier(out) #得到分类结果
     return out
     
net = rnn_classify()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adadelta(net.parameters(), 1e-1)
 
#定义训练过程
def get_acc(output, label):
  total = output.shape[0]
  _, pred_label = output.max(1)
  num_correct = (pred_label == label).sum().item()
  return num_correct / total
  
  
def train(net, train_data, valid_data, num_epochs, optimizer, criterion):
  if torch.cuda.is_available():
    net = net.cuda()
  prev_time = datetime.datetime.now()
  for epoch in range(num_epochs):
    train_loss = 0
    train_acc = 0
    net = net.train()
    for im, label in train_data:
      if torch.cuda.is_available():
        im = Variable(im.cuda()) # (bs, 3, h, w)
        label = Variable(label.cuda()) # (bs, h, w)
      else:
        im = Variable(im)
        label = Variable(label)
      # forward
      output = net(im)
      loss = criterion(output, label)
      # backward
      optimizer.zero_grad()
      loss.backward()
      optimizer.step()
 
      train_loss += loss.item()
      train_acc += get_acc(output, label)
 
    cur_time = datetime.datetime.now()
    h, remainder = divmod((cur_time - prev_time).seconds, 3600)
    m, s = divmod(remainder, 60)
    time_str = "Time %02d:%02d:%02d" % (h, m, s)
    if valid_data is not None:
      valid_loss = 0
      valid_acc = 0
      net = net.eval()
      for im, label in valid_data:
        if torch.cuda.is_available():
          im = Variable(im.cuda())
          label = Variable(label.cuda())
        else:
          im = Variable(im)
          label = Variable(label)
        output = net(im)
        loss = criterion(output, label)
        valid_loss += loss.item()
        valid_acc += get_acc(output, label)
      epoch_str = (
        "Epoch %d. Train Loss: %f, Train Acc: %f, Valid Loss: %f, Valid Acc: %f, "
        % (epoch, train_loss / len(train_data),
          train_acc / len(train_data), valid_loss / len(valid_data),
          valid_acc / len(valid_data)))
    else:
      epoch_str = ("Epoch %d. Train Loss: %f, Train Acc: %f, " %
             (epoch, train_loss / len(train_data),
             train_acc / len(train_data)))
    prev_time = cur_time
    print(epoch_str + time_str)
    
train(net, train_data, test_data, 10, optimizer, criterion)    

以上这篇pytorch 利用lstm做mnist手写数字识别分类的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多