pytorch中的上采样以及各种反操作,求逆操作详解

所属分类: 脚本专栏 / python 阅读数: 1561
收藏 0 赞 0 分享

import torch.nn.functional as F

import torch.nn as nn

F.upsample(input, size=None, scale_factor=None,mode='nearest', align_corners=None)

  r"""Upsamples the input to either the given :attr:`size` or the given
  :attr:`scale_factor`
  The algorithm used for upsampling is determined by :attr:`mode`.
  Currently temporal, spatial and volumetric upsampling are supported, i.e.
  expected inputs are 3-D, 4-D or 5-D in shape.
  The input dimensions are interpreted in the form:
  `mini-batch x channels x [optional depth] x [optional height] x width`.
  The modes available for upsampling are: `nearest`, `linear` (3D-only),
  `bilinear` (4D-only), `trilinear` (5D-only)
  Args:
    input (Tensor): the input tensor
    size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]):
      output spatial size.
    scale_factor (int): multiplier for spatial size. Has to be an integer.
    mode (string): algorithm used for upsampling:
      'nearest' | 'linear' | 'bilinear' | 'trilinear'. Default: 'nearest'
    align_corners (bool, optional): if True, the corner pixels of the input
      and output tensors are aligned, and thus preserving the values at
      those pixels. This only has effect when :attr:`mode` is `linear`,
      `bilinear`, or `trilinear`. Default: False
  .. warning::
    With ``align_corners = True``, the linearly interpolating modes
    (`linear`, `bilinear`, and `trilinear`) don't proportionally align the
    output and input pixels, and thus the output values can depend on the
    input size. This was the default behavior for these modes up to version
    0.3.1. Since then, the default behavior is ``align_corners = False``.
    See :class:`~torch.nn.Upsample` for concrete examples on how this
    affects the outputs.
  """

nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1)

"""
Parameters: 
  in_channels (int) – Number of channels in the input image
  out_channels (int) – Number of channels produced by the convolution
  kernel_size (int or tuple) – Size of the convolving kernel
  stride (int or tuple, optional) – Stride of the convolution. Default: 1
  padding (int or tuple, optional) – kernel_size - 1 - padding zero-padding will be added to both sides of each dimension in the input. Default: 0
  output_padding (int or tuple, optional) – Additional size added to one side of each dimension in the output shape. Default: 0
  groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1
  bias (bool, optional) – If True, adds a learnable bias to the output. Default: True
  dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1
"""

计算方式:

定义:nn.MaxUnpool2d(kernel_size, stride=None, padding=0)

调用:

def forward(self, input, indices, output_size=None):
  return F.max_unpool2d(input, indices, self.kernel_size, self.stride,
             self.padding, output_size)
 
  r"""Computes a partial inverse of :class:`MaxPool2d`.
  :class:`MaxPool2d` is not fully invertible, since the non-maximal values are lost.
  :class:`MaxUnpool2d` takes in as input the output of :class:`MaxPool2d`
  including the indices of the maximal values and computes a partial inverse
  in which all non-maximal values are set to zero.
  .. note:: `MaxPool2d` can map several input sizes to the same output sizes.
       Hence, the inversion process can get ambiguous.
       To accommodate this, you can provide the needed output size
       as an additional argument `output_size` in the forward call.
       See the Inputs and Example below.
  Args:
    kernel_size (int or tuple): Size of the max pooling window.
    stride (int or tuple): Stride of the max pooling window.
      It is set to ``kernel_size`` by default.
    padding (int or tuple): Padding that was added to the input
  Inputs:
    - `input`: the input Tensor to invert
    - `indices`: the indices given out by `MaxPool2d`
    - `output_size` (optional) : a `torch.Size` that specifies the targeted output size
  Shape:
    - Input: :math:`(N, C, H_{in}, W_{in})`
    - Output: :math:`(N, C, H_{out}, W_{out})` where
  计算公式:见下面
  Example: 见下面
  """

F. max_unpool2d(input, indices, kernel_size, stride=None, padding=0, output_size=None)

见上面的用法一致!

def max_unpool2d(input, indices, kernel_size, stride=None, padding=0,
         output_size=None):
  r"""Computes a partial inverse of :class:`MaxPool2d`.
  See :class:`~torch.nn.MaxUnpool2d` for details.
  """
  pass

以上这篇pytorch中的上采样以及各种反操作,求逆操作详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

QML用PathView实现轮播图

这篇文章主要为大家详细介绍了QML用PathView实现轮播图,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Opencv图像处理:如何判断图片里某个颜色值占的比例

这篇文章主要介绍了Opencv图像处理:如何判断图片里某个颜色值占的比例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python golang中grpc 使用示例代码详解

这篇文章主要介绍了python golang中grpc 使用,本文通过示例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

浅谈python opencv对图像颜色通道进行加减操作溢出

这篇文章主要介绍了浅谈python opencv对图像颜色通道进行加减操作溢出,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

解决python运行启动报错问题

这篇文章主要介绍了解决python运行启动报错问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python常见反爬虫机制解决方案

这篇文章主要介绍了Python常见反爬虫机制解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

解决pycharm导入本地py文件时,模块下方出现红色波浪线的问题

这篇文章主要介绍了解决pycharm导入本地py文件时,模块下方出现红色波浪线的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

pycharm设置默认的UTF-8编码模式的方法详解

这篇文章主要介绍了pycharm设置默认的UTF-8编码模式,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

浅谈Pycharm的项目文件名是红色的原因及解决方式

这篇文章主要介绍了浅谈Pycharm的项目文件名是红色的原因及解决方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python网络爬虫四大选择器用法原理总结

这篇文章主要介绍了Python网络爬虫四大选择器用法原理总结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多