TensorFlow tf.nn.max_pool实现池化操作方式

所属分类: 脚本专栏 / python 阅读数: 1468
收藏 0 赞 0 分享

max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似

有些地方可以从卷积去参考【TensorFlow】 tf.nn.conv2d实现卷积的方式

tf.nn.max_pool(value, ksize, strides, padding, name=None)

参数是四个,和卷积很类似:

第一个参数value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape

第二个参数ksize:池化窗口的大小,取一个四维向量,一般是[1, height, width, 1],因为我们不想在batch和channels上做池化,所以这两个维度设为了1

第三个参数strides:和卷积类似,窗口在每一个维度上滑动的步长,一般也是[1, stride,stride, 1]

第四个参数padding:和卷积类似,可以取'VALID' 或者'SAME'

返回一个Tensor,类型不变,shape仍然是[batch, height, width, channels]这种形式

示例源码:

假设有这样一张图,双通道

第一个通道:

第二个通道:

用程序去做最大值池化:

import tensorflow as tf
 
a=tf.constant([
  [[1.0,2.0,3.0,4.0],
  [5.0,6.0,7.0,8.0],
  [8.0,7.0,6.0,5.0],
  [4.0,3.0,2.0,1.0]],
  [[4.0,3.0,2.0,1.0],
   [8.0,7.0,6.0,5.0],
   [1.0,2.0,3.0,4.0],
   [5.0,6.0,7.0,8.0]]
 ])
 
a=tf.reshape(a,[1,4,4,2])
 
pooling=tf.nn.max_pool(a,[1,2,2,1],[1,1,1,1],padding='VALID')
with tf.Session() as sess:
 print("image:")
 image=sess.run(a)
 print (image)
 print("reslut:")
 result=sess.run(pooling)
 print (result)

这里步长为1,窗口大小2×2,输出结果:

image:
[[[[ 1. 2.]
 [ 3. 4.]
 [ 5. 6.]
 [ 7. 8.]]
 
 [[ 8. 7.]
 [ 6. 5.]
 [ 4. 3.]
 [ 2. 1.]]
 
 [[ 4. 3.]
 [ 2. 1.]
 [ 8. 7.]
 [ 6. 5.]]
 
 [[ 1. 2.]
 [ 3. 4.]
 [ 5. 6.]
 [ 7. 8.]]]]
reslut:
[[[[ 8. 7.]
 [ 6. 6.]
 [ 7. 8.]]
 
 [[ 8. 7.]
 [ 8. 7.]
 [ 8. 7.]]
 
 [[ 4. 4.]
 [ 8. 7.]
 [ 8. 8.]]]]

池化后的图就是:

证明了程序的结果是正确的。

我们还可以改变步长

pooling=tf.nn.max_pool(a,[1,2,2,1],[1,2,2,1],padding='VALID')

最后的result就变成:

reslut:
[[[[ 8. 7.]
 [ 7. 8.]]
 
 [[ 4. 4.]
 [ 8. 8.]]]]

以上这篇TensorFlow tf.nn.max_pool实现池化操作方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多