基于MSELoss()与CrossEntropyLoss()的区别详解

所属分类: 脚本专栏 / python 阅读数: 1401
收藏 0 赞 0 分享

基于pytorch来讲

MSELoss()多用于回归问题,也可以用于one_hotted编码形式,

CrossEntropyLoss()名字为交叉熵损失函数,不用于one_hotted编码形式

MSELoss()要求batch_x与batch_y的tensor都是FloatTensor类型

CrossEntropyLoss()要求batch_x为Float,batch_y为LongTensor类型

(1)CrossEntropyLoss() 举例说明:

比如二分类问题,最后一层输出的为2个值,比如下面的代码:

class CNN (nn.Module ) :
  def __init__ ( self , hidden_size1 , output_size , dropout_p) :
    super ( CNN , self ).__init__ ( )
    self.hidden_size1 = hidden_size1
    self.output_size = output_size
    self.dropout_p = dropout_p
    
    self.conv1 = nn.Conv1d ( 1,8,3,padding =1) 
    self.fc1 = nn.Linear (8*500, self.hidden_size1 )
    self.out = nn.Linear (self.hidden_size1,self.output_size ) 
 
  
  def forward ( self , encoder_outputs ) :
    cnn_out = F.max_pool1d ( F.relu (self.conv1(encoder_outputs)),2) 
    cnn_out = F.dropout ( cnn_out ,self.dropout_p) #加一个dropout
    cnn_out = cnn_out.view (-1,8*500) 
    output_1 = torch.tanh ( self.fc1 ( cnn_out ) )
    output = self.out ( ouput_1)
    return output

最后的输出结果为:

上面一个tensor为output结果,下面为target,没有使用one_hotted编码。

训练过程如下:

cnn_optimizer = torch.optim.SGD(cnn.parameters(),learning_rate,momentum=0.9,\
              weight_decay=1e-5)
criterion = nn.CrossEntropyLoss()
 
def train ( input_variable , target_variable , cnn , cnn_optimizer , criterion ) :
  cnn_output = cnn( input_variable )
  print(cnn_output)
  print(target_variable)
  loss = criterion ( cnn_output , target_variable)
  cnn_optimizer.zero_grad ()
  loss.backward( )
  cnn_optimizer.step( )
  #print('loss: ',loss.item())
  return loss.item() #返回损失

说明CrossEntropyLoss()是output两位为one_hotted编码形式,但target不是one_hotted编码形式。

(2)MSELoss() 举例说明:

网络结构不变,但是标签是one_hotted编码形式。下面的图仅做说明,网络结构不太对,出来的预测也不太对。

如果target不是one_hotted编码形式会报错,报的错误如下。

目前自己理解的两者的区别,就是这样的,至于多分类问题是不是也是样的有待考察。

以上这篇基于MSELoss()与CrossEntropyLoss()的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多