在python中计算ssim的方法(与Matlab结果一致)

所属分类: 脚本专栏 / python 阅读数: 435
收藏 0 赞 0 分享

如下代码可以计算输入的两张图像的结构相似度(SSIM),结果与matlab计算结果一致

// An highlighted block
import cv2
import numpy as np
def ssim(img1, img2):
  C1 = (0.01 * 255)**2
  C2 = (0.03 * 255)**2
  img1 = img1.astype(np.float64)
  img2 = img2.astype(np.float64)
  kernel = cv2.getGaussianKernel(11, 1.5)
  window = np.outer(kernel, kernel.transpose())
  mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
  mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
  mu1_sq = mu1**2
  mu2_sq = mu2**2
  mu1_mu2 = mu1 * mu2
  sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
  sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
  sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
  ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
                              (sigma1_sq + sigma2_sq + C2))
  return ssim_map.mean()
def calculate_ssim(img1, img2):
  '''calculate SSIM
  the same outputs as MATLAB's
  img1, img2: [0, 255]
  '''
  if not img1.shape == img2.shape:
    raise ValueError('Input images must have the same dimensions.')
  if img1.ndim == 2:
    return ssim(img1, img2)
  elif img1.ndim == 3:
    if img1.shape[2] == 3:
      ssims = []
      for i in range(3):
        ssims.append(ssim(img1, img2))
      return np.array(ssims).mean()
    elif img1.shape[2] == 1:
      return ssim(np.squeeze(img1), np.squeeze(img2))
  else:
    raise ValueError('Wrong input image dimensions.')

img1 = cv2.imread("Test2_HR.bmp", 0)
img2 = cv2.imread("Test2_LR2.bmp", 0)
ss = calculate_ssim(img1, img2)
print(ss)

以上所述是小编给大家介绍的在python中计算ssim的方法(与Matlab结果一致),希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对脚本之家网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多