关于Numpy数据类型对象(dtype)使用详解

所属分类: 脚本专栏 / python 阅读数: 1261
收藏 0 赞 0 分享

常用方法

#记住引入numpy时要是用别名np,则所有的numpy字样都要替换
 #查询数值类型
>>>type(float)
dtype('float64')
# 查询字符代码
>>> dtype('f')
dtype('float32')
>>> dtype('d')
dtype('float64')
# 查询双字符代码
>>> dtype('f8')
dtype('float64')
# 获取所有字符代码
>>> sctypeDict.keys()
[0, … 'i2', 'int0']
 
# char 属性用来获取字符代码
>>> t = dtype('Float64')
>>> t.char
'd'
# type 属性用来获取类型
>>> t.type
<type 'numpy.float64'>
 
# str 属性获取完整字符串表示
# 第一个字符是字节序,< 表示小端,> 表示大端,| 表示平台的字节序
>>> t.str
'<f8'
 
# 获取大小
>>> t.itemsize
8
 
# 许多函数拥有 dtype 参数
# 传入数值类型、字符代码和 dtype 都可以
>>> arange(7, dtype=uint16)
array([0, 1, 2, 3, 4, 5, 6], dtype=uint16)

类型参数及缩写

类型 字符代码
bool ?, b1
int8 b, i1
uint8 B, u1
int16 h, i2
uint16 H, u2
int32 i, i4
uint32 I, u4
int64 q, i8
uint64 Q, u8
float16 f2, e
float32 f4, f
float64 f8, d
complex64 F4, F
complex128 F8, D
str a, S(可以在S后面添加数字,表示字符串长度,比如S3表示长度为三的字符串,不写则为最大长度)
unicode U
object O
void V

自定义异构数据类型

基本书写格式

import numpy
#定义t的各个字段类型
>>> t = dtype([('name', str, 40), ('numitems', numpy.int32), ('price',numpy.float32)])
>>> t
dtype([('name', '|S40'), ('numitems', '<i4'), ('price','<f4')])
 
# 获取字段类型
>>> t['name']
dtype('|S40')
 
# 使用记录类型创建数组
# 否则它会把记录拆开
>>> itemz = array([('Meaning of life DVD', 42, 3.14), ('Butter', 13,2.72)], dtype=t)
>>> itemz[1]
('Butter', 13, 2.7200000286102295)
#再举个例*
>>>adt = np.dtype("a3, 3u8, (3,4)a10") #3字节字符串、3个64位整型子数组、3*4的10字节字符串数组,注意8为字节
>>>itemz = np.array([('Butter',[13,2,3],[['d','o','g','s'],['c','a','t','s'],['c','o','w','s']])],dtype=adt)
>>>itemz
(b'But', [13, 2, 3], [[b'd', b'o', b'g', b's'], [b'c', b'a', b't', b's'], [b'c', b'o', b'w', b's']])

其他书写格式

#(flexible_dtype, itemsize)第一个大小不固定的参数类型,第二传入大小:
>>> dt = np.dtype((void, 10)) #10位
>>> dt = np.dtype((str, 35))  # 35字符字符串
>>> dt = np.dtype(('U', 10))  # 10字符unicode string
 
#(fixed_dtype, shape)第一个传入固定大小的类型参数,第二参数传入个数
>>> dt = np.dtype((np.int32, (2,2)))     # 2*2int子数组
举例: >>>item = np.array([([12,12],[55,56])], dtype=dt)
array([[12, 12], [55, 56]])
>>> dt = np.dtype(('S10', 1))         # 10字符字符串
>>> dt = np.dtype(('i4, (2,3)f8, f4', (2,3))) # 2*3结构子数组
 
#[(field_name, field_dtype, field_shape), …]
>>> dt = np.dtype([('big', '>i4'), ('little', '<i4')])
>>> dt = np.dtype([('R','u1'), ('G','u1'), ('B','u1'), ('A','u1')])
 
#{‘names': …, ‘formats': …, ‘offsets': …, ‘titles': …, ‘itemsize': …}:
>>> dt= np.dtype({'names':('Date','Close'),'formats':('S10','f8')})
>>> dt = np.dtype({'names': ['r','b'], 'formats': ['u1', 'u1'], 'offsets': [0, 2],'titles': ['Red pixel', 'Blue pixel']})
 
#(base_dtype, new_dtype):
>>>dt = np.dtype((np.int32, (np.int8, 4))) //base_dtype被分成4个int8的子数组

以上这篇关于Numpy数据类型对象(dtype)使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现图像几何变换

这篇文章主要介绍了Python实现图像几何变换的方法,实例分析了Python基于Image模块实现图像翻转、旋转、改变大小等操作的相关技巧,非常简单实用,需要的朋友可以参考下
收藏 0 赞 0 分享

Python中的urllib模块使用详解

这篇文章主要介绍了Python中的urllib模块使用详解,是Python入门学习中的基础知识,需要的朋友可以参考下
收藏 0 赞 0 分享

Python的多态性实例分析

这篇文章主要介绍了Python的多态性,以实例形式深入浅出的分析了Python在面向对象编程中多态性的原理与实现方法,需要的朋友可以参考下
收藏 0 赞 0 分享

python生成IP段的方法

这篇文章主要介绍了python生成IP段的方法,涉及Python文件读写及随机数操作的相关技巧,具有一定参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python操作redis的方法

这篇文章主要介绍了python操作redis的方法,包括Python针对redis的连接、设置、获取、删除等常用技巧,具有一定参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python妹子图简单爬虫实例

这篇文章主要介绍了python妹子图简单爬虫,实例分析了Python爬虫程序所涉及的页面源码获取、进度显示、正则匹配等技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

分析用Python脚本关闭文件操作的机制

这篇文章主要介绍了分析用Python脚本关闭文件操作的机制,作者分Python2.x版本和3.x版本两种情况进行了阐述,需要的朋友可以参考下
收藏 0 赞 0 分享

python实现搜索指定目录下文件及文件内搜索指定关键词的方法

这篇文章主要介绍了python实现搜索指定目录下文件及文件内搜索指定关键词的方法,可实现针对文件夹及文件内关键词的搜索功能,需要的朋友可以参考下
收藏 0 赞 0 分享

python中getaddrinfo()基本用法实例分析

这篇文章主要介绍了python中getaddrinfo()基本用法,实例分析了Python中使用getaddrinfo方法进行IP地址解析的基本技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

python查找指定具有相同内容文件的方法

这篇文章主要介绍了python查找指定具有相同内容文件的方法,涉及Python针对文件操作的相关技巧,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多