Python Celery多队列配置代码实例

所属分类: 脚本专栏 / python 阅读数: 527
收藏 0 赞 0 分享

这篇文章主要介绍了Python Celery多队列配置代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

Celery官方文档

项目结构

/proj
-__init__
-app.py            #实例化celery对象
-celeryconfig.py        #celery的配置文件
-tasks.py           #celery编写任务文件

app.py

#coding:utf-8
from __future__ import absolute_import
from celery import Celery

app = Celery('proj', include=['proj.tasks'])   #实例化celery对象

app.config_from_object('proj.celeryconfig')   #引入配置文件

if __name__ == '__main__':            
  app.start()
  • proj参数为celery的名字
  • include参数为启动时导入的模块列表

tasks.py

#coding:utf-8
from __future__ import absolute_import

from proj.app import app
@app.task()
def add(x, y):
  return x + y

celeryconfig.py

#coding:utf-8
from kombu import Queue

BROKER_URL = 'amqp://guest:guest@127.0.0.1:5672//' # 使用RabbitMQ作为消息代理


CELERY_RESULT_BACKEND = 'redis://127.0.0.1:6379/0' # 把任务结果存在了Redis

CELERY_TASK_SERIALIZER = 'msgpack' # 任务序列化和反序列化使用msgpack方案

CELERY_RESULT_SERIALIZER = 'json' # 读取任务结果一般性能要求不高,所以使用了可读性更好的JSON

CELERY_TASK_RESULT_EXPIRES = 60 * 60 * 24 # 任务过期时间,不建议直接写86400,应该让这样的magic数字表述更明显

CELERY_ACCEPT_CONTENT = ['json', 'msgpack'] # 指定接受的内容类型

CELERY_QUEUES = (  #设置add队列,绑定routing_key
  Queue('add', routing_key='xue.add'),
)


CELERY_ROUTES = {  #projq.tasks.add这个任务进去add队列并routeing_key为xue.add 
  'projq.tasks.add': { 
    'queue': 'add',
    'routing_key': 'xue.add',
  }
}
  • CELERY_ACCEPT_CONTENT的类型msgpack为是一种比json更小更快的类型,如果用需要安装相对应的包。
  • CELERY_QUEUES设置一个指定routing_key的队列,这个名字可以任意指定。
  • CELERY_ROUTES设置路由,对指定的任务名,指定对应的队列和routing_key,注意,这里的routing_key需要和上面参数的一致。

启动

在proj的上层目录输入

celery -A proj.app worker -Q add -l info

proj.tasks.add为任务名称,也就是在CELERY_ROUTES设置的那个名称

add是设置的queue,key=xue.add是设置的routing_key

发布任务

from proj.tasks import add
add.delay(2,3)

多队列中需要修改的地方

CELERY_QUEUES = (  #设置add队列,绑定routing_key
  Queue('add', routing_key='xue.add'),
)


CELERY_ROUTES = {  #projq.tasks.add这个任务进去add队列并routeing_key为xue.add 
  'projq.tasks.add': { 
    'queue': 'add',
    'routing_key': 'xue.add',
  }

配置两个队列

# 配置队列
CELERY_QUEUES = (
  Queue('default', routing_key='default'),
  Queue('队列1', routing_key='key1'),
  Queue('队列2', routing_key='key2'),
)
# 路由(哪个任务放入哪个队列)
CELERY_ROUTES = {
  '任务1': {'queue': '队列1', 'routing_key': 'key1'},
  '任务2': {'queue': '对列2', 'routing_key': 'key2'},
}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多