关于pandas的离散化,面元划分详解

所属分类: 脚本专栏 / python 阅读数: 721
收藏 0 赞 0 分享

pd.cut

pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False)

x:要分箱的输入数组,必须是一维的

bins:int或标量序列

若bins是一个int,它定义在x范围内的等宽单元的数量。然而,在这种情况下,x的范围在每一侧延伸0.1%以包括x的最小值或最大值

若bins是一个序列,它定义了允许非均匀bin宽度的bin边缘。在这种情况下不进行x的范围的扩展

right:bool,可选:决定区间的开闭,如果right == True(默认),则区间[1,2,3,4]指示(1,2],(2,3],(3,4]

labels:array或boolean,默认值为无:用作生成的区间的标签。必须与生成的区间的长度相同。如果为False,则只返回bin的整数指示符

retbins:bool,可选:是否返回bin。如果bin作为标量给出,则可能有用

precision:int:存储和显示容器标签的精度,默认保留三位小数

include_lowest:bool:第一个间隔是否应该包含左边

import numpy as np
import pandas as pd
# 使用pandas的cut函数划分年龄组
ages = [20,22,25,27,21,23,37,31,61,45,32]
bins = [18,25,35,60,100]
cats = pd.cut(ages,bins)
print(cats) # 分类时,当数据不在区间中将变为nan
# 统计落在各个区间的值数量
print(pd.value_counts(cats))
# 使用codes为年龄数据进行标号
print(cats.codes)
# 设置自己想要的面元名称
group_names = ['Youth','YoungAdult','MiddleAged','Senior']
print(pd.cut(ages, bins, labels=group_names))
# 设置区间数学符号为左闭右开
print(pd.cut(ages, bins, right=False))
# 向cut传入面元的数量,则会根据数据的最小值和最大值计算等长面元
print(pd.cut(ages, 4, precision=2)) # precision=2表示设置的精度

pd.qcut

与cut类似,它可以根据样本分位数对数据进行面元划分

pandas.qcut(x, q, labels=None, retbins=False, precision=3) 

x:ndarray或Series

q:整数或分位数阵列分位数。十分位数为10,四分位数为4或者,分位数阵列,例如[0,.25,.5,.75,1.]四分位数

labels:array或boolean,默认值为无:用作生成的区间的标签。必须与生成的区间的长度相同。如果为False,则只返回bin的整数指示符。

retbins:bool,可选:是否返回bin。如果bin作为标量给出,则可能有用。

precision:int:存储和显示容器标签的精度

import numpy as np
import pandas as pd

# qcut可以根据样本分位数对数据进行面元划分
# data = np.random.randn(20) # 正态分布
data = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
cats = pd.qcut(data, 4) # 按四分位数进行切割
print(cats)
print(pd.value_counts(cats))
print("-------------------------------------------------")
# 通过指定分位数(0到1之间的数值,包含端点)进行面元划分
cats_2 = pd.qcut(data, [0, 0.5, 0.8, 0.9, 1])
print(cats_2)
print(pd.value_counts(cats_2))

以上这篇关于pandas的离散化,面元划分详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

深入浅析python3中的unicode和bytes问题

在python3中,有两种字符串类型,默认的就是str,即unicode,也叫做文本类型。这篇文章主要介绍了python3中的unicode和bytes问题,需要的朋友可以参考下
收藏 0 赞 0 分享

python3 自动识别usb连接状态,即对usb重连的判断方法

今天小编就为大家分享一篇python3 自动识别usb连接状态,即对usb重连的判断方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

python二进制文件的转译详解

这篇文章主要介绍了python二进制文件的转译详解的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python字符串中匹配数字的正则表达式

正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配。这篇文章主要介绍了python字符串中匹配数字的正则表达式 ,需要的朋友可以参考下
收藏 0 赞 0 分享

在Python中COM口的调用方法

今天小编就为大家分享一篇在Python中COM口的调用方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python read函数按字节(字符)读取文件的实现

这篇文章主要介绍了Python read函数按字节(字符)读取文件的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
收藏 0 赞 0 分享

python读取图片的方式,以及将图片以三维数组的形式输出方法

今天小编就为大家分享一篇python读取图片的方式,以及将图片以三维数组的形式输出方法,具有好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python中利用numpy求解多项式以及多项式拟合的方法

今天小编就为大家分享一篇在python中利用numpy求解多项式以及多项式拟合的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python正则表达式匹配数字和小数的方法

这篇文章主要介绍了Python正则匹配数字和小数的方法,本文通过示例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
收藏 0 赞 0 分享

python读写配置文件操作示例

这篇文章主要介绍了python读写配置文件操作,结合实例形式分析了Python针对ini配置文件的读取、解析、写入等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享
查看更多