使用Python实现正态分布、正态分布采样

所属分类: 脚本专栏 / python 阅读数: 489
收藏 0 赞 0 分享

多元正态分布(多元高斯分布)

直接从多元正态分布讲起。多元正态分布公式如下:

这就是多元正态分布的定义,均值好理解,就是高斯分布的概率分布值最大的位置,进行采样时也就是采样的中心点。而协方差矩阵在多维上形式较多。

协方差矩阵

一般来说,协方差矩阵有三种形式,分别称为球形、对角和全协方差。以二元为例:

为了方便展示不同协方差矩阵的效果,我们以二维为例。(书上截的图,凑活着看吧,是在不想画图了)

其实从这个图上可以很好的看出,协方差矩阵对正态分布的影响,也就很好明白了这三个协方差矩阵是哪里来的名字了。可以看出,球形协方差矩阵,会产生圆形(二维)或者球形(三维)的等高线,对角协方差矩阵和全协方差矩阵,会产生椭圆形的等高线。更一般地,在一个D维空间中,球形协方差矩阵,会产生一个D维球面等高线;对角协方差矩阵,会产生一个坐标轴对其的椭球型等高线;全协方差矩阵,会在任意位置产生一个坐标轴对其的椭球型等高线。

当协方差矩阵是球形的或者是对角的,单独的变量之间是独立的

协方差分解

时间不足,具体解释以后再补

下面是协方差分解的原理图

变量的线性变换(正态分布采样原理)

python实现

多元正态分布在python的numpy库中有很方便一个函数:

np.random.multivariate_normal(mean=mean, cov=conv, size=N)

这个函数中,mean代表均值,是在每个维度中的均值。cov代表协方差矩阵,就像上面讲的那种形式,协方差矩阵值的大小将决定采样范围的大小。size代表需要采样生成的点数,此时输出大小为(N*D)的坐标矩阵。

另外,其他参数包括:check_valid,这个参数用于决定当cov即协方差矩阵不是半正定矩阵时程序的处理方式,它一共有三个值:warn,raise以及ignore。当使用warn作为传入的参数时,如果cov不是半正定的程序会输出警告但仍旧会得到结果;当使用raise作为传入的参数时,如果cov不是半正定的程序会报错且不会计算出结果;当使用ignore时忽略这个问题即无论cov是否为半正定的都会计算出结果

tol:检查协方差矩阵奇异值时的公差,float类型。

下面是一个小demo

import numpy as np
import matplotlib.pyplot as plt

mean = np.array([2,1])    # 均值
conv = np.array([[0.5, 0.0],  # 协方差矩阵
     [0.0, 0.5]])
axis = np.random.multivariate_normal(mean=mean, cov=conv, size=200)
x, y = np.random.multivariate_normal(mean=mean, cov=conv, size=1000).T

# print(axis[:])

plt.plot(axis[:, 0], axis[:, 1], 'ro')
plt.show()
plt.plot(x, y, 'ro')
plt.show()

注意,单独取出每个坐标轴的坐标数组时,需要在最后加上.T,否则会报错 效果展示:

协方差值的大小对采样的影响:

mean = np.array([2,1])    # 均值
conv = np.array([[0.5, 0.0],  # 协方差矩阵
     [0.0, 0.5]])

conv2 = np.array([[10, 0.0],  # 协方差矩阵
     [0.0, 10]])
axis = np.random.multivariate_normal(mean=mean, cov=conv, size=200)
x, y = np.random.multivariate_normal(mean=mean, cov=conv2, size=200).T

# print(axis[:])

plt.plot(axis[:, 0], axis[:, 1], 'ro')
plt.show()
plt.plot(x, y, 'ro')
plt.show()

效果如下:

这里没有设定随机种子店,每次随机数会有所不同。

以上这篇使用Python实现正态分布、正态分布采样就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多