python numpy中cumsum的用法详解

所属分类: 脚本专栏 / python 阅读数: 376
收藏 0 赞 0 分享

Cumsum :计算轴向元素累加和,返回由中间结果组成的数组

重点就是返回值是“由中间结果组成的数组”

以下代码在python3.6版本运行成功!

下面看代码,定义一个2*2*3的数组,所以其shape是2,2,3,索引分别0,1,2

shape 索引
2 0
2 1
3 2

代码:

import numpy as np
arr = np.array([[[1,2,3],[8,9,12]],[[1,2,4],[2,4,5]]]) #2*2*3
print(arr.cumsum(0))
print(arr.cumsum(1))
print(arr.cumsum(2))

输出结果:

#cumsum(0)
[[[ 1  2  3]
  [ 8  9 12]]
 
 [[ 2  4  7]
  [10 13 17]]]
#cumsum(1)
[[[ 1  2  3]
  [ 9 11 15]]
 
 [[ 1  2  4]
  [ 3  6  9]]]
#cumsum(2)
[[[ 1  3  6]
  [ 8 17 29]]
 
 [[ 1  3  7]
  [ 2  6 11]]]

注释:

  • arr是一个2*2*3三维矩阵,索引值为0,1,2
  • cumsum(0):实现0轴上的累加:以最外面的数组元素为单位,以[[1,2,3],[8,9,12]]为开始实现后面元素的对应累加
  • cumsum(1):实现1轴上的累加:以中间数组元素为单位,以[1,2,3]为开始,实现后面元素的对应累加
  • cumsum(2):实现2轴上的累加:以最里面的元素为累加单位,即1为开始,实现后面的元素累加

四维数组实现

下面看一个四维数组2*2*2*4,索引值为0,1,2,3
代码:

import numpy as np
arr = np.arange(32).reshape((2,2,2,4))
print(arr)
print(arr.cumsum(0))
print(arr.cumsum(1))
print(arr.cumsum(2))
print(arr.cumsum(3))
arr:
[[[[ 0 1 2 3]
  [ 4 5 6 7]]
 
 [[ 8 9 10 11]
  [12 13 14 15]]]
 
 
 [[[16 17 18 19]
  [20 21 22 23]]
 
 [[24 25 26 27]
  [28 29 30 31]]]]

arr是一个2*2*2*4四维矩阵,索引值为0,1,2,3

cumsum(0):实现0轴上的累加即:以最外面数组元素为单位即

[[[ 0 1 2 3]
  [ 4 5 6 7]]
 
 [[ 8 9 10 11]
  [12 13 14 15]]]


[[[16 17 18 19]
  [20 21 22 23]]
 
 [[24 25 26 27]
  [28 29 30 31]]]]

对应位置元素相加起来

结果:

[[[[ 0 1 2 3]
  [ 4 5 6 7]]
 
 [[ 8 9 10 11]
  [12 13 14 15]]]
 
 
 [[[16 18 20 22]
  [24 26 28 30]]
 
 [[32 34 36 38]
  [40 42 44 46]]]]

cumsum(1):实现1轴上的累加即:以次外面元素为单位,累加:

[[ 0 1 2 3]
  [ 4 5 6 7]]


 [[ 8 9 10 11]
  [12 13 14 15]]


[[16 17 18 19]
  [20 21 22 23]]


[[24 25 26 27]
  [28 29 30 31]]

累计过程产生的中间结果要记录到数组中

所以,结果:

[[[[ 0 1 2 3]
  [ 4 5 6 7]]
 
 [[ 8 10 12 14]     
  [16 18 20 22]]]
 
 
 [[[16 17 18 19]
  [20 21 22 23]]
 
 [[40 42 44 46]
  [48 50 52 54]]]]

cumsum(2)就对应从[ 0  1  2  3]数组元素开始实现累加,然后记录中间结果

cumsum(3)对应的是从最里面最小的数组元素,即从0开始实现累加,记录中间结果

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多