python 矢量数据转栅格数据代码实例

所属分类: 脚本专栏 / python 阅读数: 1683
收藏 0 赞 0 分享

这篇文章主要介绍了python 矢量数据转栅格数据代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

投影包osr与proj4的使用

osr投影转换示例

from osgeo import osr,ogr
#定义投影
#wgs84
source=osr.SpatialReference()
source.ImportFromEPSG(4326)
#google
target=osr.SpatialReference()
target.ImportFromEPSG(3857)
#简单投影转换
coordTrans=osr.CoordinateTransformation(source,target)
#点转换
coordTrans.TransformPoint(117,40)
#点数组转换
coordTrans.TransformPoints([(117,40),(117.5,39.5)])
#SF几何对象转换
g=ogr.CreateGeometryFromWkt("POINT(117 40)")
#转换前wgs84
print(g.ExportToWkt())
print(g.GetX(),g.GetY())
#转换后google
g.Transform(coordTrans)
print(g.ExportToWkt())
print(g.GetX(),g.GetY())
2.投影转换示例
from pyproj import Proj,Geod,transform
# projection 1: UTM zone 15, grs80 ellipse, NAD83 datum
# (defined by epsg code 26915)
p1 = Proj(init='epsg:26915')
# projection 2: UTM zone 15, clrk66 ellipse, NAD27 datum
p2 = Proj(init='epsg:26715')
#点的转换(首先将地理坐标转换成p1投影坐标系下的平面直角坐标,再将x1,y1转换到p2投影坐标系下,最后将p2投影坐标系下的平面直角坐标转换成地理坐标)
x1,y1=p1(-92.199881,38.56694)
x2, y2 = transform(p1,p2,x1,y1)
print('%9.3f %11.3f' % (x1,y1))
print('%9.3f %11.3f' % (x2,y2))
print('%8.3f %5.3f' % p2(x2,y2,inverse=True))
#点数组的转换
lats = (38.83,39.32,38.75)
lons = (-92.22,-94.72,-90.37)
x1,y1=p1(lons,lats)
x2,y2=transform(p1,p2,x1,y1)
xy=x1+y1
print('%9.3f %9.3f %9.3f %11.3f %11.3f %11.3f' % xy)
xy=x2+y2
print('%9.3f %9.3f %9.3f %11.3f %11.3f %11.3f' % xy)
lons, lats = p2(x2,y2,inverse=True)
xy=lons+lats
print('%8.3f %8.3f %8.3f %5.3f %5.3f %5.3f' % xy)
p1 = Proj(proj='latlong',datum='WGS84')
x1 = -111.5; y1 = 45.25919444444
p2 = Proj(proj="utm",zone=10,datum='NAD27')
x2, y2 = transform(p1, p2, x1, y1)
print("%s %s" % (str(x2)[:9],str(y2)[:9]))

栅格数据投影转换

#栅格数据投影转换
from osgeo import gdal,osr
from osgeo.gdalconst import *
#源图像投影
source=osr.SpatialReference()
source.ImportFromEPSG(32650)
#目标图像投影
target=osr.SpatialReference()
target.ImportFromEPSG(3857)
coordTrans=osr.CoordinateTransformation(source,target)
#打开源图像文件
ds=gdal.Open("fdem.tif")
#仿射矩阵六参数
mat=ds.GetGeoTransform()
#源图像的左上角与右下角像素,在目标图像中的坐标
(ulx, uly, ulz)=coordTrans.TransformPoint(mat[0],mat[3])
(lrx, lry, lrz ) = coordTrans.TransformPoint(mat[0] + mat[1]*ds.RasterXSize, mat[3] + mat[5]* ds.RasterYSize )
#创建目标图像文件(空白图像),行列数、波段数以及数值类型仍等同原图像
driver=gdal.GetDriverByName("GTiff")
ts=driver.Create("fdem_lonlat.tif",ds.RasterXSize,ds.RasterYSize,1,GDT_UInt16)
#转换后图像的分辨率
resolution=(int)((lrx-ulx)/ds.RasterXSize)
#转换后图像的六个放射变换参数
mat2=[ulx, resolution,0,uly,0, -resolution]
ts.SetGeoTransform(mat2)
ts.SetProjection(target.ExportToWkt())
#投影转换后需要做重采样
gdal.ReprojectImage(ds, ts, source.ExportToWkt(), target.ExportToWkt(), gdal.GRA_Bilinear)
#关闭
ds = None
ts= None

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多