Win10+GPU版Pytorch1.1安装的安装步骤

所属分类: 脚本专栏 / python 阅读数: 446
收藏 0 赞 0 分享

安装cuda

更新nvidia驱动

打开GeForce Game Ready Driver或在GeForce Experience中下载符合自己gpu的程序。

选择cuda

打开nvidia控制面板

点击帮助、点击系统信息、在点击组件在3D设置中可以看到cuda信息

在我升级过nvidia驱动后,cuda的版本更新到了10.1。接下来下载cuda .

cuda10.1安装完毕。

安装cuDNN

在安装了cuda10.1后选择对应的cuDNN版本v7.6.1

解压文件,然后添加bin目录到环境变量

安装cuDNN

在安装了cuda10.1后选择对应的cuDNN版本v7.6.1

解压文件,然后添加bin目录到环境变量

使用Anaconda prompt创建环境

conda create -n pytorch_gpu pip python=3.7

其中pytorch_gpu是环境的名字,python版本是3.7

conda activate pytorch_gpu

这个命令可以进入创建好的环境。

安装Pytorch

建议切换源,我使用的是中国科学技术大学”(USTC Open Source Software Mirror)提供anaconda的镜像源,速度提高不少。

方法一:

conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes

方法二:

打开.condarc文件,进行编辑

这个顺序存在一个优先级,会先在中国科学技术大学的镜像源寻找,如果大家感觉速度慢,也可以换别的镜像源。

打开官网选择后复制命令

conda install pytorch torchvision cudatoolkit=10.0 -c pytorch

整个过程只需要按一下'y'即可。

验证

为了确保PyTorch是否安装成功,我们需要运行简单的样例代码测试,例如打印出随机生成的张量矩阵,以及gpu是否可以使用。

import torch
x = torch.rand(5,5)
print(x)

输出类似下面

tensor([[0.7078, 0.1424, 0.3411, 0.3987, 0.3476],
    [0.7534, 0.7137, 0.3489, 0.4226, 0.3640],
    [0.4104, 0.8411, 0.5112, 0.0629, 0.0664],
    [0.7568, 0.9495, 0.3300, 0.2392, 0.6441],
    [0.7615, 0.1883, 0.6001, 0.9663, 0.3313]])

如果ok,pytorch安装成功。

torch.cuda.is_available()

返回True,GPU版Pytorch安装完毕。

将PyTorch导入Pycharm

点击Pycharm的选项栏中的File选择Settings,然后点击Project Interpreter,接着点击右侧的Add。

然后在Conda Environment中选择Existing environment

选择Anaconda3下的python.exe,Conda executable选择conda.exe

如果失败,选择Anaconda3下的env下的新创建的虚拟环境中选择python,试一试。

Pycharm开启科学计算模式(Scientific Mode)

具体步骤:

  1. Settings –> Tools –> Python Scientific > Show plots in tool window 勾选
  2. View 勾选 Scientific Mode
  3. Run–>Edit configurations…
  4. 勾选 Run with python console

开启科学运算模式,舒服,正在习惯这个姿势。

ps:如果想恢复到普通模式,只需要在view下,取消scientific mode勾选。

结束语

​ 环境安装完毕,以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

更多精彩内容其他人还在看

Python实现按学生年龄排序的实际问题详解

这篇文章主要给大家介绍了关于Python实现按学生年龄排序实际问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python开发的HTTP库requests详解

Requests是用Python语言编写,基于urllib,采用Apache2 Licensed开源协议的HTTP库。它比urllib更加方便,可以节约我们大量的工作,完全满足HTTP测试需求。Requests的哲学是以PEP 20 的习语为中心开发的,所以它比urllib更加P
收藏 0 赞 0 分享

Python网络爬虫与信息提取(实例讲解)

下面小编就为大家带来一篇Python网络爬虫与信息提取(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

在python3环境下的Django中使用MySQL数据库的实例

下面小编就为大家带来一篇在python3环境下的Django中使用MySQL数据库的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
收藏 0 赞 0 分享

Python 3.x读写csv文件中数字的方法示例

在我们日常开发中经常需要对csv文件进行读写,下面这篇文章主要给大家介绍了关于Python 3.x读写csv文件中数字的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
收藏 0 赞 0 分享

Python实现解析Bit Torrent种子文件内容的方法

这篇文章主要介绍了Python实现解析Bit Torrent种子文件内容的方法,结合实例形式分析了Python针对Torrent文件的读取与解析相关操作技巧与注意事项,需要的朋友可以参考下
收藏 0 赞 0 分享

Python实现文件内容批量追加的方法示例

这篇文章主要介绍了Python实现文件内容批量追加的方法,结合实例形式分析了Python文件的读写相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

Python简单实现自动删除目录下空文件夹的方法

这篇文章主要介绍了Python简单实现自动删除目录下空文件夹的方法,涉及Python针对文件与目录的读取、判断、删除等相关操作技巧,需要的朋友可以参考下
收藏 0 赞 0 分享

简单学习Python多进程Multiprocessing

这篇文章主要和大家一起简单的学习Python多进程Multiprocessing ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
收藏 0 赞 0 分享

Python导入模块时遇到的错误分析

这篇文章主要给大家详细解释了在Python处理导入模块的时候出现错误以及具体的情况分析,非常的详尽,有需要的小伙伴可以参考下
收藏 0 赞 0 分享
查看更多